Your browser doesn't support javascript.
loading
Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting.
Yang, Yi; Zhou, Shan; Lv, Zirui; Hung, Chin-Te; Zhao, Zaiwang; Zhao, Tiancong; Chao, Dongliang; Kong, Biao; Zhao, Dongyuan.
Afiliação
  • Yang Y; Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhou S; Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Lv Z; College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, P. R. China.
  • Hung CT; Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhao Z; Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhao T; College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China.
  • Chao D; Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Kong B; Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhao D; Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
J Am Chem Soc ; 146(28): 19580-19589, 2024 Jul 17.
Article em En | MEDLINE | ID: mdl-38977375
ABSTRACT
Developing ionic diode membranes featuring asymmetric structures is in high demand for salinity gradient energy harvesting. These membranes offer benefits in mitigating ion concentration polarization, thereby promoting ion permeability. However, most reported works focus on the role of heterogeneous charge-based bipolar ionic diode membranes for ion concentration polarization suppression, with comparatively less attention given to maintaining ion selectivity. Herein, unipolar ionic diode nanofluidic mesoporous silica membranes featuring stepped mesochannels were developed via a micellar sequential oriented interfacial self-assembly strategy as a salinity gradient energy harvester. Due to the asymmetric mesochannels and unipolar structure (both sides carry negative charge), the ionic diode membranes exhibit a strong rectification ratio of ∼15.91 to facilitate unidirectional ion transport while maintaining excellent cation selectivity (cation transfer number of ∼0.85). Besides, the vertically aligned mesochannels significantly reduce ion transport resistance, generating a high ionic flux. Consequently, the unipolar ionic diode nanofluidic membranes demonstrate a power output of 5.88 W/m2 between artificial sea and river water. The unipolar feature gives notable enhancements of 296% and 144% in power output compared to the symmetric membrane and bipolar ionic diode membrane, respectively. This work opens up new routes for designing ionic diode membranes for salinity gradient energy harvesting.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos