Your browser doesn't support javascript.
loading
Arbuscular mycorrhizal fungi attenuate negative impact of drought on soil functions.
Tang, Bo; Man, Jing; Lehmann, Anika; Rillig, Matthias C.
Afiliação
  • Tang B; Institute of Biology, Freie Universität Berlin, Berlin, Germany.
  • Man J; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
  • Lehmann A; Institute of Biology, Freie Universität Berlin, Berlin, Germany.
  • Rillig MC; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
Glob Chang Biol ; 30(7): e17409, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38978455
ABSTRACT
Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Microbiologia do Solo / Micorrizas / Secas Idioma: En Revista: Glob Chang Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Microbiologia do Solo / Micorrizas / Secas Idioma: En Revista: Glob Chang Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Reino Unido