Design of Multivariate Biological Metal-Organic Frameworks: Toward Mimicking Active Sites of Enzymes.
Inorg Chem
; 63(29): 13681-13688, 2024 Jul 22.
Article
em En
| MEDLINE
| ID: mdl-38982342
ABSTRACT
Mimicking enzymatic processes carried out by natural enzymes, which are highly efficient biocatalysts with key roles in living organisms, attracts much interest but constitutes a synthetic challenge. Biological metal-organic frameworks (bioMOFs) are potential candidates to be enzyme catalysis mimics, as they offer the possibility to combine biometals and biomolecules into open-framework porous structures capable of simulating the catalytic pockets of enzymes. In this work, we first study the catalase activity of a previously reported bioMOF, derived from the amino acid L-serine, with formula {CaIICuII6[(S,S)-serimox]3(OH)2(H2O)} · 39H2O (1) (serimox = bis[(S)-serine]oxalyl diamide), which is indeed capable to mimic catalase enzymes, in charge of preventing cell oxidative damage by decomposing, efficiently, hydrogen peroxide to water and oxygen (2H2O2 â 2 H2O + O2). With these results in hand, we then prepared a new multivariate bioMOF (MTV-bioMOF) that combines two different types of bioligands derived from L-serine and L-histidine amino acids with formula CaIICuII6[(S,S)-serimox]2[(S,S)-hismox]1(OH)2(H2O)}·27H2O (2) (hismox = bis[(S)-histidine]oxalyl diamide ligand). MTV-bioMOF 2 outperforms 1 degrading hydrogen peroxide, confirming the importance of the amino acid residue from the histidine amino acid acting as a nucleophile in the catalase degradation mechanism. Despite displaying a more modest catalytic behavior than other reported MOF composites, in which the catalase enzyme is immobilized inside the MOF, this work represents the first example of a MOF in which an attempt is made to replicate the active center of the catalase enzyme with its constituent elements and is capable of moderate catalytic activity.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Catalase
/
Domínio Catalítico
/
Materiais Biomiméticos
/
Estruturas Metalorgânicas
Idioma:
En
Revista:
Inorg Chem
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Espanha
País de publicação:
Estados Unidos