Your browser doesn't support javascript.
loading
Ligand-Solvent Coordination Enables Comprehensive Trap Passivation for Efficient Near-Infrared Quantum Dot Light-Emitting Diodes.
Wang, Ye; Liu, Zong-Shuo; Zhao, Feng; Liu, Wei-Zhi; Shen, Wan-Shan; Zhou, Dong-Ying; Wang, Ya-Kun; Liao, Liang-Sheng.
Afiliação
  • Wang Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
  • Liu ZS; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
  • Zhao F; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
  • Liu WZ; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
  • Shen WS; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
  • Zhou DY; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
  • Wang YK; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
  • Liao LS; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for, Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
Angew Chem Int Ed Engl ; 63(40): e202407833, 2024 Oct 01.
Article em En | MEDLINE | ID: mdl-38984901
ABSTRACT
Near-infrared light-emitting diodes (NIR LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiency (EQE) of ~15 %. However, these high-performance NIR-QLEDs suffer from immediate carrier quenching because of the accumulation of migratable ions at the surface of the QDs. These uncoordinated ions and carriers-if not bound to the nanocrystal surface-serve as centers for exciton quenching and device degradation. In this work, we overcome this issue and fabricate high-performance NIR QLEDs by devising a ligand anchoring strategy, which entails dissolving the strong-binding ligand (Guanidine Hydroiodide, GAI) in the mediate-polar solvent. By employing the dye-sensitized device structure (phosphorescent indicator), we demonstrate the elimination of the interface defects. The treated QDs films exhibit an exciton binding energy of 117 meV this represents a 1.5-fold increase compared to that of the control (74 meV). We report, as a result, the NIR QLEDs with an EQE of 21 % which is a record among NIR perovskite QLEDs. These QLEDs also exhibit a 7-fold higher operational stability than that of the best previously reported NIR QLEDs. Furthermore, we demonstrate that the QDs are compatible with large-area QLEDs we showcase 900 mm2 QLEDs with EQE approaching 20 %.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha