Your browser doesn't support javascript.
loading
Genetic constraint at single amino acid resolution in protein domains improves missense variant prioritisation and gene discovery.
Zhang, Xiaolei; Theotokis, Pantazis I; Li, Nicholas; Wright, Caroline F; Samocha, Kaitlin E; Whiffin, Nicola; Ware, James S.
Afiliação
  • Zhang X; National Heart & Lung Institute, Imperial College London, London, UK. xiaolei@ebi.ac.uk.
  • Theotokis PI; MRC Laboratory of Medical Sciences, Imperial College London, London, UK. xiaolei@ebi.ac.uk.
  • Li N; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK. xiaolei@ebi.ac.uk.
  • Wright CF; National Heart & Lung Institute, Imperial College London, London, UK.
  • Samocha KE; MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
  • Whiffin N; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
  • Ware JS; National Heart & Lung Institute, Imperial College London, London, UK.
Genome Med ; 16(1): 88, 2024 Jul 11.
Article em En | MEDLINE | ID: mdl-38992748
ABSTRACT

BACKGROUND:

One of the major hurdles in clinical genetics is interpreting the clinical consequences associated with germline missense variants in humans. Recent significant advances have leveraged natural variation observed in large-scale human populations to uncover genes or genomic regions that show a depletion of natural variation, indicative of selection pressure. We refer to this as "genetic constraint". Although existing genetic constraint metrics have been demonstrated to be successful in prioritising genes or genomic regions associated with diseases, their spatial resolution is limited in distinguishing pathogenic variants from benign variants within genes.

METHODS:

We aim to identify missense variants that are significantly depleted in the general human population. Given the size of currently available human populations with exome or genome sequencing data, it is not possible to directly detect depletion of individual missense variants, since the average expected number of observations of a variant at most positions is less than one. We instead focus on protein domains, grouping homologous variants with similar functional impacts to examine the depletion of natural variations within these comparable sets. To accomplish this, we develop the Homologous Missense Constraint (HMC) score. We utilise the Genome Aggregation Database (gnomAD) 125 K exome sequencing data and evaluate genetic constraint at quasi amino-acid resolution by combining signals across protein homologues.

RESULTS:

We identify one million possible missense variants under strong negative selection within protein domains. Though our approach annotates only protein domains, it nonetheless allows us to assess 22% of the exome confidently. It precisely distinguishes pathogenic variants from benign variants for both early-onset and adult-onset disorders. It outperforms existing constraint metrics and pathogenicity meta-predictors in prioritising de novo mutations from probands with developmental disorders (DD). It is also methodologically independent of these, adding power to predict variant pathogenicity when used in combination. We demonstrate utility for gene discovery by identifying seven genes newly significantly associated with DD that could act through an altered-function mechanism.

CONCLUSIONS:

Grouping variants of comparable functional impacts is effective in evaluating their genetic constraint. HMC is a novel and accurate predictor of missense consequence for improved variant interpretation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mutação de Sentido Incorreto Limite: Humans Idioma: En Revista: Genome Med Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mutação de Sentido Incorreto Limite: Humans Idioma: En Revista: Genome Med Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido