Your browser doesn't support javascript.
loading
Predicting host-based, synthetic lethal antiviral targets from omics data.
Staheli, Jeannette P; Neal, Maxwell L; Navare, Arti; Mast, Fred D; Aitchison, John D.
Afiliação
  • Staheli JP; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  • Neal ML; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  • Navare A; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  • Mast FD; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  • Aitchison JD; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
NAR Mol Med ; 1(1): ugad001, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38994440
ABSTRACT
Traditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR knockout (KO) screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data revealed potential broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: NAR Mol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: NAR Mol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido