Your browser doesn't support javascript.
loading
Influence of multi-stressor combinations of pCO2, temperature, and salinity on the toxicity of Heterosigma akashiwo (Raphidophyceae), a fish-killing flagellate.
Allaf, Malihe Mehdizadeh; Trick, Charles G.
Afiliação
  • Allaf MM; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
  • Trick CG; Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
J Phycol ; 60(4): 1001-1020, 2024 08.
Article em En | MEDLINE | ID: mdl-38995628
ABSTRACT
Climate change and global warming have led to more frequent harmful algal blooms in the last decade. Among these blooms, Heterosigma akashiwo, a golden-brown phytoflagellate, is one of the 40 species with a high potential to form harmful blooms, leading to significant fish mortality. Climate change leads to rising atmospheric and ocean temperatures. These changes, along with altered rainfall patterns and meltwater input, can cause fluctuations in ocean salinity. Elevated atmospheric carbon dioxide (CO2) levels increase water acidity as oceans absorb CO2. This study investigated the effects of temperature, salinity, and CO2 levels on lipid production, hemolytic activity, and toxicity of H. akashiwo using the design of experiment approach, which can be used to investigate the effect of two or more factors on the same response simultaneously in a precise manner with fewer experiments and materials but in a larger region of the factor space. The lipid content was measured using a high-throughput Nile Red method, and the highest level of lipid content was detected at 25°C, a salinity of 30, and a CO2 concentration of 400 ppm. Hemolytic activity was assessed using rabbit blood erythrocytes in a 96-well plate, and the optimal conditions for achieving the highest hemolytic activity were determined at 15°C, a salinity of 10, and a CO2 concentration of 400 ppm. As the chemical structure of the toxin is not known, we used the toxicity against the cell line RTgill-W1 as the cell toxicity proxy. The maximum toxicity was identified at 15°C, a salinity of 10, and a CO2 level of 700 ppm.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Temperatura / Dióxido de Carbono / Salinidade Limite: Animals Idioma: En Revista: J Phycol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Temperatura / Dióxido de Carbono / Salinidade Limite: Animals Idioma: En Revista: J Phycol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos