Your browser doesn't support javascript.
loading
Deep survival analysis for interpretable time-varying prediction of preeclampsia risk.
Eberhard, Braden W; Gray, Kathryn J; Bates, David W; Kovacheva, Vesela P.
Afiliação
  • Eberhard BW; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
  • Gray KJ; Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
  • Bates DW; Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, USA; Department of Health Care Policy and Management, Harvard T. H. Chan School of Public Health, Boston, USA.
  • Kovacheva VP; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address: vkovacheva@bwh.harvard.edu.
J Biomed Inform ; 156: 104688, 2024 Aug.
Article em En | MEDLINE | ID: mdl-39002866
ABSTRACT

OBJECTIVE:

Survival analysis is widely utilized in healthcare to predict the timing of disease onset. Traditional methods of survival analysis are usually based on Cox Proportional Hazards model and assume proportional risk for all subjects. However, this assumption is rarely true for most diseases, as the underlying factors have complex, non-linear, and time-varying relationships. This concern is especially relevant for pregnancy, where the risk for pregnancy-related complications, such as preeclampsia, varies across gestation. Recently, deep learning survival models have shown promise in addressing the limitations of classical models, as the novel models allow for non-proportional risk handling, capturing nonlinear relationships, and navigating complex temporal dynamics.

METHODS:

We present a methodology to model the temporal risk of preeclampsia during pregnancy and investigate the associated clinical risk factors. We utilized a retrospective dataset including 66,425 pregnant individuals who delivered in two tertiary care centers from 2015 to 2023. We modeled the preeclampsia risk by modifying DeepHit, a deep survival model, which leverages neural network architecture to capture time-varying relationships between covariates in pregnancy. We applied time series k-means clustering to DeepHit's normalized output and investigated interpretability using Shapley values.

RESULTS:

We demonstrate that DeepHit can effectively handle high-dimensional data and evolving risk hazards over time with performance similar to the Cox Proportional Hazards model, achieving an area under the curve (AUC) of 0.78 for both models. The deep survival model outperformed traditional methodology by identifying time-varied risk trajectories for preeclampsia, providing insights for early and individualized intervention. K-means clustering resulted in patients delineating into low-risk, early-onset, and late-onset preeclampsia groups-notably, each of those has distinct risk factors.

CONCLUSION:

This work demonstrates a novel application of deep survival analysis in time-varying prediction of preeclampsia risk. Our results highlight the advantage of deep survival models compared to Cox Proportional Hazards models in providing personalized risk trajectory and demonstrating the potential of deep survival models to generate interpretable and meaningful clinical applications in medicine.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pré-Eclâmpsia Limite: Adult / Female / Humans / Pregnancy Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pré-Eclâmpsia Limite: Adult / Female / Humans / Pregnancy Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos