Your browser doesn't support javascript.
loading
A novel deep machine learning algorithm with dimensionality and size reduction approaches for feature elimination: thyroid cancer diagnoses with randomly missing data.
Tutsoy, Onder; Sumbul, Hilmi Erdem.
Afiliação
  • Tutsoy O; Adana Alparslan Turkes Science and Technology University, Adana, Turkey.
  • Sumbul HE; University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey.
Brief Bioinform ; 25(4)2024 May 23.
Article em En | MEDLINE | ID: mdl-39007597
ABSTRACT
Thyroid cancer incidences endure to increase even though a large number of inspection tools have been developed recently. Since there is no standard and certain procedure to follow for the thyroid cancer diagnoses, clinicians require conducting various tests. This scrutiny process yields multi-dimensional big data and lack of a common approach leads to randomly distributed missing (sparse) data, which are both formidable challenges for the machine learning algorithms. This paper aims to develop an accurate and computationally efficient deep learning algorithm to diagnose the thyroid cancer. In this respect, randomly distributed missing data stemmed singularity in learning problems is treated and dimensionality reduction with inner and target similarity approaches are developed to select the most informative input datasets. In addition, size reduction with the hierarchical clustering algorithm is performed to eliminate the considerably similar data samples. Four machine learning algorithms are trained and also tested with the unseen data to validate their generalization and robustness abilities. The results yield 100% training and 83% testing preciseness for the unseen data. Computational time efficiencies of the algorithms are also examined under the equal conditions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Neoplasias da Glândula Tireoide / Aprendizado Profundo Limite: Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Turquia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Neoplasias da Glândula Tireoide / Aprendizado Profundo Limite: Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Turquia País de publicação: Reino Unido