Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction.
Network
; 35(4): 379-402, 2024 Nov.
Article
em En
| MEDLINE
| ID: mdl-39014986
ABSTRACT
Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Redes Neurais de Computação
/
Tecnologia sem Fio
Limite:
Humans
Idioma:
En
Revista:
Network
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Índia
País de publicação:
Reino Unido