Your browser doesn't support javascript.
loading
AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery.
Liu, Junchi; Du, Hanze; Huang, Lei; Xie, Wangni; Liu, Kexuan; Zhang, Xue; Chen, Shi; Zhang, Yuan; Li, Daowei; Pan, Hui.
Afiliação
  • Liu J; Department of Anesthesiology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130012, China.
  • Du H; Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
  • Huang L; Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
  • Xie W; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China.
  • Liu K; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China.
  • Zhang X; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China.
  • Chen S; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130012, China.
  • Zhang Y; Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
  • Li D; Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
  • Pan H; Department of Anesthesiology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130012, China.
Article em En | MEDLINE | ID: mdl-39016521
ABSTRACT
Phenotypic drug discovery (PDD), which involves harnessing biological systems directly to uncover effective drugs, has undergone a resurgence in recent years. The rapid advancement of artificial intelligence (AI) over the past few years presents numerous opportunities for augmenting phenotypic drug screening on microfluidic platforms, leveraging its predictive capabilities, data analysis, efficient data processing, etc. Microfluidics coupled with AI is poised to revolutionize the landscape of phenotypic drug discovery. By integrating advanced microfluidic platforms with AI algorithms, researchers can rapidly screen large libraries of compounds, identify novel drug candidates, and elucidate complex biological pathways with unprecedented speed and efficiency. This review provides an overview of recent advances and challenges in AI-based microfluidics and their applications in drug discovery. We discuss the synergistic combination of microfluidic systems for high-throughput screening and AI-driven analysis for phenotype characterization, drug-target interactions, and predictive modeling. In addition, we highlight the potential of AI-powered microfluidics to achieve an automated drug screening system. Overall, AI-powered microfluidics represents a promising approach to shaping the future of phenotypic drug discovery by enabling rapid, cost-effective, and accurate identification of therapeutically relevant compounds.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China