Your browser doesn't support javascript.
loading
A translational model of chronic diabetic nephropathy in the Nile grass rat.
Naseri, Marzieh; Ranaei Pirmardan, Ehsan; Melhorn, Mark I; Zhang, Yuanlin; Barakat, Aliaa; Hafezi-Moghadam, Ali.
Afiliação
  • Naseri M; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.
  • Ranaei Pirmardan E; Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
  • Melhorn MI; Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
  • Zhang Y; Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
  • Barakat A; Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
  • Hafezi-Moghadam A; Interstitial Lung Disease Collaborative, Pulmonary Care and Research Collaborative, Boston, Massachusetts, USA.
FASEB J ; 38(14): e23789, 2024 Jul 31.
Article em En | MEDLINE | ID: mdl-39018098
ABSTRACT
Diabetic nephropathy (DN) is a major healthcare challenge for individuals with diabetes and associated with increased cardiovascular morbidity and mortality. The existing rodent models do not fully represent the complex course of the human disease. Hence, developing a translational model of diabetes that reproduces both the early and the advanced characteristics of DN and faithfully recapitulates the overall human pathology is an unmet need. Here, we introduce the Nile grass rat (NGR) as a novel model of DN and characterize key pathologies underlying DN. NGRs spontaneously developed insulin resistance, reactive hyperinsulinemia, and hyperglycemia. Diabetic NGRs evolved DN and the key histopathological aspects of the human advanced DN, including glomerular hypertrophy, infiltration of mononuclear cells, tubular dilatation, and atrophy. Enlargement of the glomerular tufts and the Bowman's capsule areas accompanied the expansion of the Bowman's space. Glomerular sclerosis, renal arteriolar hyalinosis, Kimmelsteil-Wilson nodular lesions, and protein cast formations in the kidneys of diabetic NGR occurred with DN. Diabetic kidneys displayed interstitial and glomerular fibrosis, key characteristics of late human pathology as well as thickening of the glomerular basement membrane and podocyte effacement. Signs of injury included glomerular lipid accumulation, significantly more apoptotic cells, and expression of KIM-1. Diabetic NGRs became hypertensive, a known risk factor for kidney dysfunction, and showed decreased glomerular filtration rate. Diabetic NGRs recapitulate the breadth of human DN pathology and reproduce the consequences of chronic kidney disease, including injury and loss of function of the kidney. Hence, NGR represents a robust model for studying DN-related complications and provides a new foundation for more detailed mechanistic studies of the genesis of nephropathy, and the development of new therapeutic approaches.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nefropatias Diabéticas / Modelos Animais de Doenças Limite: Animals / Humans / Male Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nefropatias Diabéticas / Modelos Animais de Doenças Limite: Animals / Humans / Male Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos