Your browser doesn't support javascript.
loading
A Reexamination of Peto's Paradox: Insights Gained from Human Adaptation to Varied Levels of Ionizing and Non-ionizing Radiation.
Mortazavi, Seyed Mohammad Javad; Zare, Omid; Ghasemi, Leyla; Taghizadeh, Parmis; Faghani, Parsa; Arshadi, Maryam; Mortazavi, Seyed Ali Reza; Sihver, Lembit.
Afiliação
  • Mortazavi SMJ; Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
  • Zare O; Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
  • Ghasemi L; Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
  • Taghizadeh P; School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
  • Faghani P; Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
  • Arshadi M; Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
  • Mortazavi SAR; MVLS College, The University of Glasgow, Glasgow, Scotland, United Kingdom.
  • Sihver L; Department of Physics, East Carolina University, Greenville, USA.
J Biomed Phys Eng ; 14(3): 309-314, 2024 Jun.
Article em En | MEDLINE | ID: mdl-39027707
ABSTRACT
Humans have generally evolved some adaptations to protect against UV and different levels of background ionizing radiation. Similarly, elephants and whales have evolved adaptations to protect against cancer, such as multiple copies of the tumor suppressor gene p53, due to their large size and long lifespan. The difference in cancer protection strategies between humans and elephants/whales depends on genetics, lifestyle, environmental exposures, and evolutionary pressures. In this paper, we discuss how the differences in evolutionary adaptations between humans and elephants could explain why elephants have evolved a protective mechanism against cancer, whereas humans have not. Humans living in regions with high levels of background radiation, e.g. in Ramsar, Iran where exposure rates exceed those on the surface of Mars, seem to have developed some kind of protection against the ionizing radiation. However, humans in general have not developed cancer-fighting adaptations, so they instead rely on medical technologies and interventions. The difference in cancer protection strategies between humans and elephants/whales depends on genetics, lifestyle, environmental exposures, and evolutionary pressures. In this paper, we discuss how the differences in evolutionary adaptations between humans and elephants could explain why elephants have evolved a protective mechanism against cancer, whereas humans have not. Studying elephant adaptations may provide insights into new cancer prevention and treatment strategies for humans, but further research is required to fully understand the evolutionary disparities.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Biomed Phys Eng Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã País de publicação: Irã

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Biomed Phys Eng Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã País de publicação: Irã