Your browser doesn't support javascript.
loading
Design and Performance of Small-Molecule Donors with Donor-π-Acceptor Architecture Toward Vacuum-Deposited Organic Photovoltaics Having Heretofore Highest Short-Circuit Current Density.
Chen, Bin-Wen; Cao, Kun; Wang, Xu; Chen, Zuo-Chang; Jeong, Sang Young; Qiu, Zhen-Lin; Dai, Le-Shan; Li, Yun-Fei; Yang, Ke-Yue; Yun, Da-Qin; Woo, Han Young; Deng, Lin-Long; Xie, Su-Yuan; Zheng, Lan-Sun.
Afiliação
  • Chen BW; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Cao K; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Wang X; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Chen ZC; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Jeong SY; Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
  • Qiu ZL; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Dai LS; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Li YF; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Yang KY; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Yun DQ; College of Energy, Xiamen University, Xiamen, 361005, China.
  • Woo HY; Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
  • Deng LL; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Xie SY; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
  • Zheng LS; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Chi
Small ; : e2403486, 2024 Jun 20.
Article em En | MEDLINE | ID: mdl-39031678
ABSTRACT
The development of high-performance organic photovoltaic materials is of crucial importance for the commercialization of organic solar cells (OSCs). Herein, two structurally simple donor-π-conjugated linker-acceptor (D-π-A)-configured small-molecule donors with methyl-substituted triphenylamine as D unit, 1,1-dicyanomethylene-3-indanone as A unit, and thiophene or furan as π-conjugated linker, named DTICPT and DTICPF, are developed. DTICPT and DTICPF are facilely prepared via a two-step synthetic process with simple procedures. DTICPF with a furan π-conjugated linker exhibits stronger and broader optical absorption, deeper highest occupied molecular orbital (HOMO) energy levels, and better charge transport, compared to its thiophene analog DTICPT. As a result, vacuum-deposited OSCs based on DTICPF C70 show an impressive power conversion efficiency (PCE) of 9.36% (certified 9.15%) with short-circuit current density (Jsc) up to 17.49 mA cm-2 (certified 17.56 mA cm-2), which is the highest Jsc reported so far for vacuum-deposited OSCs. Besides, devices based on DTICPT C70 and DTICPF C70 exhibit excellent long-term stability under different aging conditions. This work offers important insights into the rational design of D-π-A configured small-molecule donors for high efficient and stable vacuum-deposited OSCs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article