Your browser doesn't support javascript.
loading
MOF-derived high-density carbon nanotubes "tentacle" with boosting electrocatalytic activity for detecting ascorbic acid.
Zhang, Yan; Han, Minghui; Peng, Danni; Qin, Haowen; Zheng, Hehaoming; Xiao, Jian; Yang, Nan.
Afiliação
  • Zhang Y; Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer
  • Han M; Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer
  • Peng D; Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer
  • Qin H; Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer
  • Zheng H; Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer
  • Xiao J; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, Wuhan, 430205, Hubei Province, China.
  • Yang N; Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer
Talanta ; 279: 126578, 2024 Jul 19.
Article em En | MEDLINE | ID: mdl-39032458
ABSTRACT
Accurate detection of ascorbic acid (AA) plays a significant role in food and human physiological processes. Herein, a three-dimensional flexible leaf-like nitrogen-doped hierarchical carbon nanoarrays with high-density carbon nanotube "tentacle" architecture (NC/CNT-Co), which possesses high specific surface area, plenty of active defect sites, and various pore size distributions, was synthesized by the pyrolysis of zeolitic imidazolate framework (ZIF(Co)), while g-C3N4 acted as carbon source and heteroatom doping agent. Benefiting from its unique structure and surface properties, a selective and highly sensitive AA sensor was developed using this material. Compared to powder materials, NC/CNT-Co modified CF (CF@NC/CNT-Co) which don't be extra decorated, exhibits lower detection limit (1 µM), a wider linear range (20-1400 µM), and better stability, showing higher performance in electrocatalysis and detection of AA. Furthermore, CF@NC/CNT-Co also demonstrates high resistance to interference and fouling in AA detection. Particularly, the prepared CF@NC/CNT-Co electrode could determine AA in beverage samples with a recovery rate of 96.3-103.5 %. Therefore, the three-dimensional NC/CNT-Co hierarchical structure can be provided as an original electrode nanomaterial suitable for the selective and sensitive detection of AA, with a wide range of practical applications from food analysis to the pharmaceutical industry.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article