Your browser doesn't support javascript.
loading
[Mechanism of salidroside in inhibiting proliferation, migration and promoting phenotypic switching of arterial smooth muscle cells].
Zhang, Yong-Jie; Yan, Zhi-Gang; Lin, Fei; Liu, Hui-Bing; Zhao, Guo-An.
Afiliação
  • Zhang YJ; Nanyang Central Hospital Nanyang 473009, China.
  • Yan ZG; Gongyi City People's Hospital Gongyi 450015, China.
  • Lin F; the First Affiliated Hospital of Xinxiang Medical University Xinxiang 453100, China.
  • Liu HB; the First Affiliated Hospital of Xinxiang Medical University Xinxiang 453100, China.
  • Zhao GA; the First Affiliated Hospital of Xinxiang Medical University Xinxiang 453100, China.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3356-3364, 2024 Jun.
Article em Zh | MEDLINE | ID: mdl-39041099
ABSTRACT
This study aims to examine the effect of salidroside(SAL) on the phenotypic switching of human aortic smooth muscle cells(HASMC) induced by the platelet-derived growth factor-BB(PDGF-BB) and investigate the pharmacological mechanism. Firstly, the safe concentration of SAL was screened by the lactate dehydrogenase release assay. HASMC were divided into control, model, and SAL groups, and the cells in other groups except the control group were treated with PDGF-BB for the modeling of phenotypic switching. Cell proliferation and migration were detected by the cell-counting kit(CCK-8) assay and Transwell assay, respectively. The cytoskeletal structure was observed by F-actin staining with fluorescently labeled phalloidine. The protein levels of proliferating cell nuclear antigen(PCNA), migration-related protein matrix metalloprotein 9(MMP-9), fibronectin, α-smooth muscle actin(α-SMA), and osteopontin(OPN) were determined by Western blot. To further investigate the pharmacological mechanism of SAL, this study determined the expression of protein kinase B(Akt) and mammalian target of rapamycin(mTOR), as well as the upstream proteins phosphatase and tensin homologue(PTEN) and platelet-derived growth factor receptor ß(PDGFR-ß) and the downstream protein hypoxia-inducible factor-1α(HIF-1α) of the Akt/mTOR signaling pathway. The results showed that the HASMCs in the model group presented significantly increased proliferation and migration, the switching from a contractile phenotype to a secretory phenotype, and cytoskeletal disarrangement. Compared with the model group, SAL weakened the proliferation and migration of HASMC, promoted the expression of α-SMA(a contractile phenotype marker), inhibited the expression of OPN(a secretory phenotype marker), and repaired the cytoskeletal disarrangement. Furthermore, compared with the control group, the modeling up-regulated the levels of phosphorylated Akt and mTOR and the relative expression of PTEN, HIF-1α, and PDGFR-ß. Compared with the model group, SAL down-regulated the protein levels of phosphorylated Akt and mTOR, PTEN, PDGFR-ß, and HIF-1α. In conclusion, SAL exerts a protective effect on the HASMCs exposed to PDGF-BB by regulating the PDGFR-ß/Akt/mTOR/HIF-1α signaling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Movimento Celular / Miócitos de Músculo Liso / Proliferação de Células / Glucosídeos Limite: Humans Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Assunto da revista: FARMACOLOGIA / TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Movimento Celular / Miócitos de Músculo Liso / Proliferação de Células / Glucosídeos Limite: Humans Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Assunto da revista: FARMACOLOGIA / TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China