Chemically Recyclable Pseudo-Polysaccharides from Living Ring-Opening Polymerization of Glucurono-1,6-lactones.
J Am Chem Soc
; 146(31): 21868-21876, 2024 Aug 07.
Article
em En
| MEDLINE
| ID: mdl-39051936
ABSTRACT
Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization. Furthermore, we demonstrate that our approach is modular, as evidenced by tunable glass transition temperatures (Tg) and the ability to produce both amorphous and semicrystalline polymers by adjusting the monomer side chain structure. Lastly, we showcased the complete catalytic chemical recycling of these pseudo-polysaccharides back to the monomers. The flexibility of the polymerization and the recyclability of these pseudo-polysaccharides promote a sustainable circular economy while offering the potential to access polysaccharide-like materials with tunable thermal and mechanical properties.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos