Your browser doesn't support javascript.
loading
Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling.
Fontana, Jason; Sparkman-Yager, David; Faulkner, Ian; Cardiff, Ryan; Kiattisewee, Cholpisit; Walls, Aria; Primo, Tommy G; Kinnunen, Patrick C; Garcia Martin, Hector; Zalatan, Jesse G; Carothers, James M.
Afiliação
  • Fontana J; Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
  • Sparkman-Yager D; Department of Chemistry, University of Washington, Seattle, WA, USA.
  • Faulkner I; Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
  • Cardiff R; Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
  • Kiattisewee C; Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
  • Walls A; Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
  • Primo TG; Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
  • Kinnunen PC; Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
  • Garcia Martin H; Department of Chemistry, University of Washington, Seattle, WA, USA.
  • Zalatan JG; Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
  • Carothers JM; Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
Nat Commun ; 15(1): 6341, 2024 Jul 27.
Article em En | MEDLINE | ID: mdl-39068154
ABSTRACT
Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (rS = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Escherichia coli / Sistemas CRISPR-Cas / RNA Guia de Sistemas CRISPR-Cas Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Escherichia coli / Sistemas CRISPR-Cas / RNA Guia de Sistemas CRISPR-Cas Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido