Your browser doesn't support javascript.
loading
An efficient model for extracting respiratory and blood oxygen saturation data from photoplethysmogram signals by removing motion artifacts using heuristic-aided ensemble learning model.
Bondala, Venumaheswar Rao; Komalla, Ashoka Reddy.
Afiliação
  • Bondala VR; Department of E&I Engineering, Kakatiya Institute of Technology and Science, Warangal, Koukonda, Telangana, 506015, India. Electronic address: bvm.eie@kitsw.ac.in.
  • Komalla AR; Department of ECE, Kakatiya Institute of Technology and Science, Warangal, Koukonda, Telangana, 506015, India. Electronic address: kar.ece@kitsw.ac.in.
Comput Biol Med ; 180: 108911, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39089111
ABSTRACT
Patients with surgical, pulmonary, and cardiac problems, continual monitoring of Oxygen Saturation of a Person (SpO2) and Respiratory Rate (RR) is essential. Similarly, the persons with cardiopulmonary health issues, RR estimation is crucial. The performance of the ventilator assistance and lung medicines are evaluated using SpO2 and RR. For the persons, those who are living alone with respiratory illnesses need a compulsory estimation of RR. In case of serious illness, the RR might face abrupt changes. The immobility of the disturbance and RR makes the RR evaluation from the PhotoPlethysmoGraphic (PPG) signals is a difficult challenge. So, an efficient RR and SpO2 estimation framework from the PPG signal using the deep learning method is developed in this paper. At first, the PPG signal is collected from standard data sources. The collected PPG signals undergo signal pre-processing. The pre-processing procedures include Motion Artifacts (MA) removal and filtering techniques. The pre-processed signals are split into distinct windows. From the split windows of the signals, the spectral features, RR, and Respiratory Peak Variance (RPV) features are extracted. The retrieved features are selected optimally with the help of Advanced Golden Tortoise Beetle Optimizer (AGTBO). The weights are chosen optimally with the same AGTBO. The optimally selected features are fused with the optimal features to get the weighted optimal features. These weighted optimal features are fed into the Ensemble Learning-based RR and SpO2 Estimation Network (ELRR-SpO2EN). The ensemble learning model is developed by combining Multilayer Perceptron (MLP), AdaBoost, and Attention-based Long Short Term Memory (A-LSTM). The performance of the developed RR and SpO2 estimation model is compared with other existing techniques. The experimental analysis results revealed that the proposed AGTBO-ELRR-SpO2EN model attained 96 % accuracy for the second dataset, which is higher than the conventional models such as MLP (90 %), Adaboost (92 %), A-LSTM (92 %), and MLP-ADA-ALSTM (94 %). Thus, it has been confirmed that the designed RR and SpO2 estimation framework from PPG signals is more efficient than the other conventional models.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Sinais Assistido por Computador / Fotopletismografia / Saturação de Oxigênio Limite: Humans / Male Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Sinais Assistido por Computador / Fotopletismografia / Saturação de Oxigênio Limite: Humans / Male Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos