Enhancement of Mass Transport in Catalyst Layers of HT-PEMFC with Tetrafluorophenyl Phosphonic Acid Binder.
Chem Asian J
; : e202400662, 2024 Aug 02.
Article
em En
| MEDLINE
| ID: mdl-39095336
ABSTRACT
The design and development of new and efficient catalyst binder materials are important for improving cell performance in high-temperature proton-exchange membrane fuel cells (HT-PEMFCs). In this study, a series of tetrafluorophenyl phosphonic acid-based binder materials (PF-y-P, y = 1, 0.83, and 0.67) with rigid structures and controllable degrees of phosphonation were prepared and used in HT-PEMFCs using the ultra-strong acid-catalyzed Friedel-Crafts reaction and the combined Michaelis-Arbuzov reaction. The samples exhibited high stability, low water uptake, superior proton conductivity, and cell performance. In addition, the oxygen mass transport properties of the PF-1-P binder were investigated using high-temperature microelectrode electrochemical testing techniques. Compared with the phosphoric acid-doped polybenzimidazole (PBI) binder, the O2 solubility of PF-1-P binder material increased by 30% (5.36 × 10-6 mol cm-3) and the PF-1-P binder material exhibited better cell stability in HT-PEMFCs. After 10.5 h of discharge at a constant current of 0.12 A cm-2, the MEA voltage decreased by 7.1% and 20.8% in case of the PF-1-P and PBI binders, respectively.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chem Asian J
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Alemanha