Your browser doesn't support javascript.
loading
Towards a better understanding of ethylmercury in the environment: Addressing propylation derivatization artifact and verifying its occurrence in Chinese wetlands.
Wu, Yurong; Liu, Guangliang; Liu, Xiaoquan; Mao, Yuxiang; Guo, Yingying; Liu, Yanwei; Zhu, Liuchao; Yin, Yongguang; Cai, Yong; Jiang, Guibin.
Afiliação
  • Wu Y; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of S
  • Liu G; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
  • Liu X; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
  • Mao Y; School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, PR China.
  • Guo Y; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of S
  • Liu Y; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of S
  • Zhu L; Shimadzu China Innovation Center, Shimadzu (China) Co. LTD, Beijing 100020, PR China.
  • Yin Y; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of S
  • Cai Y; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of S
  • Jiang G; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of S
Water Res ; 263: 122167, 2024 Aug 05.
Article em En | MEDLINE | ID: mdl-39106623
ABSTRACT
Ethylmercury (EtHg), similar to methylmercury (MeHg), is highly neurotoxic and bioaccumulative. Although recent studies suggested its occurrence in natural soils and sediments, the common propylation derivatization for EtHg analysis might generate EtHg artifacts, potentially leading to its overestimation in environmental samples. Furthermore, the extensive environmental prevalence of EtHg remains unverified, keeping its importance largely uncertain. This study investigated the formation of EtHg artifacts during propylation derivatization, evaluating artifacts formation and recoveries under different extraction methods with real samples, and confirmed the widespread occurrence of EtHg in Chinese wetlands. EtHg artifacts were obviously present during the propylation derivatization and strongly dependent on the levels of Hg2+ (0.1-10 ng) in the derivatization solution (R² = 0.99), accounting for 1.38-2.14% of Hg2+. CuSO4-HNO3CH2Cl2 extraction (effectively removing Hg2+) combined with propylation derivatization offers excellent recovery (81-86%) and low artifacts (< LOD 1.98 × 10-4 ng/g) for EtHg measurement in soils/sediments, with results aligning with those from online solid phase extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry (R2 = 0.99). Additionally, we observed the occurrence of EtHg in soil and sediment samples across 14 Chinese wetlands, with concentrations varying from 6.08 to 171 pg/g, similar to MeHg concentrations at some sites. EtHg positively correlates with MeHg, total Hg, and total organic carbon across all samples, indicating a possible biological formation. These findings help better understand and predict the prevalence of EtHg in wetlands and its key role in environmental Hg cycle.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article