Your browser doesn't support javascript.
loading
Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity.
Bu, Fan; Aiello, Allison E; Volfovsky, Alexander; Xu, Jason.
Afiliação
  • Bu F; Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
  • Aiello AE; Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA.
  • Volfovsky A; Department of Statistical Science, Duke University, 214 Old Chemistry, Box 90251, Durham, NC 27708, USA.
  • Xu J; Department of Statistical Science, Duke University, 214 Old Chemistry, Box 90251, Durham, NC 27708, USA.
Biostatistics ; 2024 Aug 08.
Article em En | MEDLINE | ID: mdl-39113272
ABSTRACT
We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biostatistics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biostatistics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido