Your browser doesn't support javascript.
loading
MoO3 nanobelts cathode promotes Al3+ insertion in aqueous aluminum-ion batteries.
Chen, Lei; Lv, Cuncai; Gu, Hanqing; Zhang, Wenming; Li, Zhanyu.
Afiliação
  • Chen L; Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
  • Lv C; Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China. Electronic address: lvcuncai@163.com.
  • Gu H; Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
  • Zhang W; Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China. Electronic address: wmzhanghbu@126.com.
  • Li Z; Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China. Electronic address: zyli@hbu.edu.cn.
J Colloid Interface Sci ; 677(Pt A): 1045-1051, 2024 Aug 10.
Article em En | MEDLINE | ID: mdl-39134079
ABSTRACT
Aqueous aluminium ion batteries (AAIBs) have attracted much attention due to their high theoretical capacity, safety, and environmental friendliness. However, the Research and Development (R&D) of cathode materials has limited its development and application. MoO3 has been proven to be a reliable and stable cathode material, nevertheless, it faces the dilemma of poor cycling performance and low specific capacity in AAIBs due to the irreversible phase transition in its structure. In this paper, MoO3 synthesized by a hydrothermal method has a unique nanobelt structure, which significantly enhances the structural stability of MoO3 and reduces its structural damage during charging/discharging. In addition, the nanobelt structure also gives MoO3 a rougher surface, which provides a large number of active sites and spaces for the insertion and extraction of Al3+ and improves the diffusion rate of Al3+ to a large extent. Experimental results demonstrate that this MoO3 nanobelt cathode exhibits significantly improved cycling stability and high specific capacity in AAIBs. This paper provides a practical solution to the existing challenges of AAIBs and further promotes the development and application of molybdenum-based materials in AAIBs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA