An Efficient MnO2 Photocathode with an Excellent SnO2 Electron Transport Layer for Photo-Accelerated Zinc Ion Batteries.
Small
; : e2405627, 2024 Aug 13.
Article
em En
| MEDLINE
| ID: mdl-39139012
ABSTRACT
Photo-accelerated rechargeable batteries play a crucial role in fully utilizing solar energy, but it is still a challenge to fabricate dual-functional photoelectrodes with simultaneous high solar energy harvesting and storage. This work reports an innovative photo-accelerated zinc-ion battery (PAZIB) featuring a photocathode with a SnO2@MnO2 heterojunction. The design ingeniously combines the excellent electronic conductivity of SnO2 with the high energy storage and light absorption capacities of MnO2. The capacity of the SnO2@MnO2-based PAZIB is ≈598 mAh g-1 with a high photo-conversion efficiency of 1.2% under illumination at 0.1 A g-1, which is superior to that of most reported MnO2-based ZIB. The boosting performance is attributed to the synergistic effect of enhanced photogenerated carrier separation efficiency, improved conductivity, and promoted charge transfer by the SnO2@MnO2 heterojunction, which is confirmed by systematic experiments and theoretical simulations. This work provides valuable insights into the development of dual-function photocathodes for effective solar energy utilization.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Small
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Alemanha