Your browser doesn't support javascript.
loading
Early detection of abiotic stress in plants through SNARE proteins using hybrid feature fusion model.
T, Bhargavi; D, Sumathi.
Afiliação
  • T B; School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India.
  • D S; School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India.
PeerJ Comput Sci ; 10: e2149, 2024.
Article em En | MEDLINE | ID: mdl-39145217
ABSTRACT
Agriculture is the main source of livelihood for most of the population across the globe. Plants are often considered life savers for humanity, having evolved complex adaptations to cope with adverse environmental conditions. Protecting agricultural produce from devastating conditions such as stress is essential for the sustainable development of the nation. Plants respond to various environmental stressors such as drought, salinity, heat, cold, etc. Abiotic stress can significantly impact crop yield and development posing a major threat to agriculture. SNARE proteins play a major role in pathological processes as they are vital proteins in the life sciences. These proteins act as key players in stress responses. Feature extraction is essential for visualizing the underlying structure of the SNARE proteins in analyzing the root cause of abiotic stress in plants. To address this issue, we developed a hybrid model to capture the hidden structures of the SNAREs. A feature fusion technique has been devised by combining the potential strengths of convolutional neural networks (CNN) with a high dimensional radial basis function (RBF) network. Additionally, we employ a bi-directional long short-term memory (Bi-LSTM) network to classify the presence of SNARE proteins. Our feature fusion model successfully identified abiotic stress in plants with an accuracy of 74.6%. When compared with various existing frameworks, our model demonstrates superior classification results.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PeerJ Comput Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PeerJ Comput Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos