Your browser doesn't support javascript.
loading
Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis.
Yalcinkaya, Dilek M; Youssef, Khalid; Heydari, Bobak; Wei, Janet; Merz, Noel Bairey; Judd, Robert; Dharmakumar, Rohan; Simonetti, Orlando P; Weinsaft, Jonathan W; Raman, Subha V; Sharif, Behzad.
Afiliação
  • Yalcinkaya DM; Laboratory for Translational Imaging of Microcirculation, Indiana University School of Medicine, Indianapolis, IN, USA.
  • Youssef K; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
  • Heydari B; Laboratory for Translational Imaging of Microcirculation, Indiana University School of Medicine, Indianapolis, IN, USA.
  • Wei J; Krannert Cardiovascular Research Center, Dept. of Medicine, Indiana Univ. School of Medicine, Indianapolis, IN, USA.
  • Merz NB; Stephenson Cardiac Imaging Centre, Department of Cardiac Sciences, University of Calgary, Alberta, Canada.
  • Judd R; Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Dharmakumar R; Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Simonetti OP; Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA.
  • Weinsaft JW; Krannert Cardiovascular Research Center, Dept. of Medicine, Indiana Univ. School of Medicine, Indianapolis, IN, USA.
  • Raman SV; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
  • Sharif B; Department of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
ArXiv ; 2024 Aug 09.
Article em En | MEDLINE | ID: mdl-39148930
ABSTRACT

Background:

Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software (pulse sequence) and hardware (scanner vendor) is an ongoing challenge.

Methods:

Datasets from 3 medical centers acquired at 3T (n = 150 subjects; 21,150 first-pass images) were included an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, dubbed Data Adaptive Uncertainty-Guided Space-time (DAUGS) analysis, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. For comparison, we also trained a DNN using the established approach with the same settings (hyperparameters, data augmentation, etc.).

Results:

The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (Dice score for the testing subset of inD 0.896 ± 0.050 vs. 0.890 ± 0.049; p = n.s.) whereas it significantly outperformed on the external datasets (Dice for exD-1 0.885 ± 0.040 vs. 0.849 ± 0.065, p < 0.005; Dice for exD-2 0.811 ± 0.070 vs. 0.728 ± 0.149, p < 0.005). Moreover, the number of image series with "failed" segmentation (defined as having myocardial contours that include bloodpool or are noncontiguous in ≥1 segment) was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005).

Conclusions:

The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ArXiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ArXiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos