Your browser doesn't support javascript.
loading
Heterogeneous Structure of Ni-Mo Nanoalloys Decorated on MoOx for an Efficient Hydrogen Evolution Reaction Using Hydrogen Spillover.
Song, DongHoon; Roh, Jeonghan; Choi, Jungwoo; Lee, Hyein; Koh, Gyungmo; Kwon, YongKeun; Kim, HyoWon; Lee, Hyuck Mo; Kim, MinJoong; Cho, EunAe.
Afiliação
  • Song D; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Roh J; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Choi J; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Lee H; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Koh G; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kwon Y; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kim H; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Lee HM; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kim M; Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.
  • Cho E; Energy Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
Adv Sci (Weinh) ; : e2403752, 2024 Aug 19.
Article em En | MEDLINE | ID: mdl-39159050
ABSTRACT
Herein, a heterogeneous structure of Ni-Mo catalyst comprising Ni4Mo nanoalloys decorated on a MoOx matrix via electrodeposition is introduced. This catalyst exhibits remarkable hydrogen evolution reaction (HER) activity across a range of pH conditions. The heterogeneous Ni-Mo catalyst showed low overpotentials only of 24 and 86, 21 and 60, and 37 and 168 mV to produce a current density of 10 and 100 mA cm-2 (η10 and η100) in alkaline, acidic, and neutral media, respectively, which represents one of the most active catalysts for the HER. The enhanced activity is attributed to the hydrogen spillover effect, where hydrogen atoms migrate between the Ni4Mo alloys and the MoOx matrix, forming hydrogen molybdenum bronze as additional active sites. Additionally, the Ni4Mo facilitated the water dissociation process, which helps the Volmer step in the alkaline/neutral HER. Through electrochemical analysis, in situ Raman spectroscopy, and density functional theory calculations, the fast HER mechanism is elucidated.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2024 Tipo de documento: Article