Your browser doesn't support javascript.
loading
Data-driven quantum chemical property prediction leveraging 3D conformations with Uni-Mol.
Lu, Shuqi; Gao, Zhifeng; He, Di; Zhang, Linfeng; Ke, Guolin.
Afiliação
  • Lu S; DP Technology, Beijing, China.
  • Gao Z; DP Technology, Beijing, China.
  • He D; Peking University, Beijing, China.
  • Zhang L; DP Technology, Beijing, China.
  • Ke G; DP Technology, Beijing, China. kegl@dp.tech.
Nat Commun ; 15(1): 7104, 2024 Aug 19.
Article em En | MEDLINE | ID: mdl-39160169
ABSTRACT
Quantum chemical (QC) property prediction is crucial for computational materials and drug design, but relies on expensive electronic structure calculations like density functional theory (DFT). Recent deep learning methods accelerate this process using 1D SMILES or 2D graphs as inputs but struggle to achieve high accuracy as most QC properties depend on refined 3D molecular equilibrium conformations. We introduce Uni-Mol+, a deep learning approach that leverages 3D conformations for accurate QC property prediction. Uni-Mol+ first generates a raw 3D conformation using RDKit then iteratively refines it towards DFT equilibrium conformation using neural networks, which is finally used to predict the QC properties. To effectively learn this conformation update process, we introduce a two-track Transformer model backbone and a novel training approach. Our benchmarking results demonstrate that the proposed Uni-Mol+ significantly improves the accuracy of QC property prediction in various datasets.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido