HOCl-producing electrochemical bandage is active in murine polymicrobial wound infection.
Microbiol Spectr
; 12(10): e0062624, 2024 Oct 03.
Article
em En
| MEDLINE
| ID: mdl-39162542
ABSTRACT
Wound infections, exacerbated by the prevalence of antibiotic-resistant bacterial pathogens, necessitate innovative antimicrobial approaches. Polymicrobial infections, often involving Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), present challenges due to biofilm formation and antibiotic resistance. Hypochlorous acid (HOCl), a potent antimicrobial agent, holds promise as an alternative therapy. An electrochemical bandage (e-bandage) that generates HOCl in situ via precise polarization controlled by a miniaturized potentiostat was evaluated for the treatment of murine wound biofilm infections containing both P. aeruginosa with "difficult-to-treat" resistance and MRSA. Previously, HOCl-producing e-bandage was shown to reduce murine wound biofilms containing P. aeruginosa alone. Here, in 5-mm excisional skin wounds containing 48-h biofilms comprising MRSA and P. aeruginosa combined, polarized e-bandage treatment reduced MRSA by 1.1 log10 CFU/g (P = 0.026) vs non-polarized e-bandage treatment (no HOCl production), and 1.4 log10 CFU/g (0.0015) vs Tegaderm only controls; P. aeruginosa was similarly reduced by 1.6 log10 CFU/g (P = 0.0032) and 1.6 log10 CFU/g (P = 0.0015), respectively. For wounds infected with MRSA alone, polarized e-bandage treatment reduced bacterial load by 1.1 log10 CFU/g (P = 0.0048) and 1.3 log10 CFU/g (P = 0.0048) compared with non-polarized e-bandage and Tegaderm only, respectively. The e-bandage treatment did not negatively impact wound healing or cause tissue toxicity. The addition of systemic antibiotics did not enhance the antimicrobial efficacy of e-bandages. This study provides additional evidence for the HOCl-producing e-bandage as a novel antimicrobial strategy for managing wound infections, including in the context of antibiotic resistance and polymicrobial infections. IMPORTANCE New approaches are needed to combat the rise of antimicrobial-resistant infections. The HOCl-producing electrochemical bandage (e-bandage) leverages in situ generation of HOCl, a natural biocide, for broad-spectrum killing of wound pathogens. Unlike traditional therapies that may exhibit limited activity against biofilms and antimicrobial-resistant organisms, the e-bandage offers a potent, standalone solution that does not contribute to further resistance or require adjunctive antibiotic therapy. Here, we show the ability of the e-bandage to address polymicrobial infection by antimicrobial resistant clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa, two commonly isolated, co-infecting wound pathogens. Effectiveness of the HOCl-producing e-bandage in reducing pathogen load while minimizing tissue toxicity and avoiding the need for systemic antibiotics underscores its potential as a tool in managing complex wound infections.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pseudomonas aeruginosa
/
Infecções Estafilocócicas
/
Bandagens
/
Infecção dos Ferimentos
/
Ácido Hipocloroso
/
Biofilmes
/
Staphylococcus aureus Resistente à Meticilina
/
Antibacterianos
Limite:
Animals
Idioma:
En
Revista:
Microbiol Spectr
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos