Your browser doesn't support javascript.
loading
Performance of two different artificial intelligence (AI) methods for assessing carpal bone age compared to the standard Greulich and Pyle method.
Alaimo, Davide; Terranova, Maria Chiara; Palizzolo, Ettore; De Angelis, Manfredi; Avella, Vittorio; Paviglianiti, Giuseppe; Lo Re, Giuseppe; Matranga, Domenica; Salerno, Sergio.
Afiliação
  • Alaimo D; Dipartimento di Diagnostica per Immagini Policlinico, Università degli Studi di Palermo, Via del Vespro 127, 90127, Palermo, Italy.
  • Terranova MC; UOC Radiologia Pediatrica Dipartimento di Diagnostica per Immagini e Interventistica, ARNAS, Ospedali Civico, Di Cristina Benfratelli, Palermo, Italy.
  • Palizzolo E; Dipartimento di Diagnostica per Immagini Policlinico, Università degli Studi di Palermo, Via del Vespro 127, 90127, Palermo, Italy.
  • De Angelis M; Dipartimento di Diagnostica per Immagini Policlinico, Università degli Studi di Palermo, Via del Vespro 127, 90127, Palermo, Italy.
  • Avella V; Dipartimento di Diagnostica per Immagini Policlinico, Università degli Studi di Palermo, Via del Vespro 127, 90127, Palermo, Italy.
  • Paviglianiti G; UOC Radiologia Pediatrica Dipartimento di Diagnostica per Immagini e Interventistica, ARNAS, Ospedali Civico, Di Cristina Benfratelli, Palermo, Italy.
  • Lo Re G; Dipartimento di Diagnostica per Immagini Policlinico, Università degli Studi di Palermo, Via del Vespro 127, 90127, Palermo, Italy.
  • Matranga D; Dipartimento Promozione della Salute, Materno-Infantile (PROMISE), Università Di Palermo, Palermo, Italy.
  • Salerno S; Dipartimento di Diagnostica per Immagini Policlinico, Università degli Studi di Palermo, Via del Vespro 127, 90127, Palermo, Italy. ssalerno@sirm.org.
Radiol Med ; 129(10): 1507-1512, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39162939
ABSTRACT

PURPOSE:

Evaluate the agreement between bone age assessments conducted by two distinct machine learning system and standard Greulich and Pyle method. MATERIALS AND

METHODS:

Carpal radiographs of 225 patients (mean age 8 years and 10 months, SD = 3 years and 1 month) were retrospectively analysed at two separate institutions (October 2018 and May 2022) by both expert radiologists and radiologists in training as well as by two distinct AI software programmes, 16-bit AItm and BoneXpert® in a blinded manner.

RESULTS:

The bone age range estimated by the 16-bit AItm system in our sample varied between 1 year and 1 month and 15 years and 8 months (mean bone age 9 years and 5 months SD = 3 years and 3 months). BoneXpert® estimated bone age ranged between 8 months and 15 years and 7 months (mean bone age 8 years and 11 months SD = 3 years and 3 months). The average bone age estimated by the Greulich and Pyle method was between 11 months and 14 years, 9 months (mean bone age 8 years and 4 months SD = 3 years and 3 months). Radiologists' assessments using the Greulich and Pyle method were significantly correlated (Pearson's r > 0.80, p < 0.001). There was no statistical difference between BoneXpert® and 16-bit AItm (mean difference = - 0.19, 95%CI = (- 0.45; 0.08)), and the agreement between two measurements varies between - 3.45 (95%CI = (- 3.95; - 3.03) and 3.07 (95%CI - 3.03; 3.57).

CONCLUSIONS:

Both AI methods and GP provide correlated results, although the measurements made by AI were closer to each other compared to the GP method.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Determinação da Idade pelo Esqueleto / Ossos do Carpo Limite: Adolescent / Child / Child, preschool / Female / Humans / Infant / Male Idioma: En Revista: Radiol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália País de publicação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Determinação da Idade pelo Esqueleto / Ossos do Carpo Limite: Adolescent / Child / Child, preschool / Female / Humans / Infant / Male Idioma: En Revista: Radiol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália País de publicação: Itália