Your browser doesn't support javascript.
loading
Deep Learning Powers Protein Identification from Precursor MS Information.
Dai, Yameng; Yang, Yi; Wu, Enhui; Shen, Chengpin; Qiao, Liang.
Afiliação
  • Dai Y; Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
  • Yang Y; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
  • Wu E; Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
  • Shen C; Shanghai Omicsolution Co., Ltd., Shanghai 201100, China.
  • Qiao L; Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
J Proteome Res ; 23(9): 3837-3846, 2024 Sep 06.
Article em En | MEDLINE | ID: mdl-39167422
ABSTRACT
Proteome analysis currently heavily relies on tandem mass spectrometry (MS/MS), which does not fully utilize MS1 features, as many precursors remain unselected for MS/MS fragmentation, especially in the cases of low abundance samples and wide abundance dynamic range samples. Therefore, leveraging MS1 features as a complement to MS/MS has become an attractive option to improve the coverage of feature identification. Herein, we propose MonoMS1, an approach combining deep learning-based retention time, ion mobility, detectability prediction, and logistic regression-based scoring for MS1 feature identification. The approach achieved a significant increase in MS1 feature identification based on an E. coli data set. Application of MonoMS1 to data sets with wide dynamic range, such as human serum proteome samples, and with low sample abundance, such as single-cell proteome samples, enabled substantial complementation of MS/MS-based peptide and protein identification. This method opens a new avenue for proteomic analysis and can boost proteomic research on complex samples.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteoma / Proteômica / Escherichia coli / Espectrometria de Massas em Tandem / Aprendizado Profundo Limite: Humans Idioma: En Revista: J Proteome Res Assunto da revista: BIOQUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteoma / Proteômica / Escherichia coli / Espectrometria de Massas em Tandem / Aprendizado Profundo Limite: Humans Idioma: En Revista: J Proteome Res Assunto da revista: BIOQUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos