Your browser doesn't support javascript.
loading
Green synthesis of diatom-allophane bio-nanocomposites for highly efficient oxytetracycline adsorption.
Li, Mengyuan; Wang, Shun; Liu, Dong; Losic, Dusan; Zhao, Ning; Tian, Qian; Shen, Yuguo; Yu, Rongda; Liu, Hao; Ma, Qiyi; Yuan, Peng.
Afiliação
  • Li M; CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemical Engi
  • Wang S; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China.
  • Liu D; CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; State Key Laboratory of Marine Environmental Science (MEL), Xiamen University, Xiamen 361
  • Losic D; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.
  • Zhao N; CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Tian Q; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, China.
  • Shen Y; CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Yu R; CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Liu H; CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Ma Q; CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Yuan P; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
Sci Total Environ ; 951: 175641, 2024 Nov 15.
Article em En | MEDLINE | ID: mdl-39168336
ABSTRACT
The extensive use of the antibiotic oxytetracycline (OTC) has led to considerable environmental contamination and other negative impacts, prompting an urgent need for a green, effective, and innovative OTC adsorption material. In this study, diatom-allophane bio-nanocomposites were synthesized using a simple and eco-friendly method, yielding a homogeneous coating of allophane nanoparticles on diatom surfaces. The resultant bio-nanocomposites were found to have hierarchically porous structures and abundant active sites derived from successful allophane loading and dispersion on diatom surfaces. The OTC adsorption capacity of this novel adsorbent is remarkable (219.112 mg·g-1), surpassing the capacities of raw allophane and diatoms by >5 and 10 times, respectively. Mechanistically, OTC adsorption by the bio-nanocomposites was found to be driven primarily by chemisorption through a process involving complexation between the amide and amino groups on OTC and the aluminum hydroxyl and carboxyl groups on the adsorbent surface. Electrostatic interactions and hydrogen bonding also contribute significantly to OTC capture. Furthermore, the diatom-allophane bio-nanocomposites exhibit excellent performance over a wide pH range (4-7), in the presence of various cations (Na+, K+, Ca2+, Mg2+) and anions (Cl-, NO3-, SO42-), and in real water bodies. These findings demonstrate the potential of the diatom-allophane bio-nanocomposite as a green, efficient, and promising biological-mineral adsorbent for environmental remediation, leveraging the combined utilization of biological and mineral resources.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxitetraciclina / Poluentes Químicos da Água / Diatomáceas / Nanocompostos Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxitetraciclina / Poluentes Químicos da Água / Diatomáceas / Nanocompostos Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda