Your browser doesn't support javascript.
loading
[Emission Characteristics and Environmental Impact of VOCs from Wooden Furniture-manufacturing Industry in China].
Liu, Wen-Wen; Shao, Xia; Teng, Wei.
Afiliação
  • Liu WW; Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
  • Shao X; Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
  • Teng W; Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100012, China.
Huan Jing Ke Xue ; 45(8): 4470-4483, 2024 Aug 08.
Article em Zh | MEDLINE | ID: mdl-39168667
ABSTRACT
Volatile organic compounds (VOCs) from the wooden furniture-manufacturing industry are an important emission source. To study the emission characteristics of VOCs from the wooden furniture-manufacturing industry and associated environmental impacts, nine typical wooden furniture manufacturers in China were selected to carry out sample collection and VOCs detection. The maximum incremental reactivity (MIR) method and secondary organic aerosol (SOA) formation potential method were used to quantify the corresponding contributions to the generation of O3 and SOA. The results showed that: ① The concentrations of VOCs emitted from different types of coating exhaust gas were different. The emission concentration of VOCs in solvent-based coating exhaust gas was significantly higher than that in water-based coating exhaust gas and ultra-violet (UV) coating exhaust gas, and the VOCs emission concentrations ranged between 2.82 - 155.37, 1.13 - 104.45, and 0.57 - 1.15 mg·m-3, respectively. ② The main organic group in solvent-based coating exhaust gas was esters, accounting for 45.88%, and butyl acetate (31.07%) was the main VOCs species. The main organic group in water-based coating exhaust gas and UV coating exhaust gas was alcohols, and the main VOCs species in water-based coating exhaust gas and UV coating exhaust gas were both ethanol, accounting for 46.63% and 34.32%, respectively. ③ The OFP of VOCs emitted by solvent-based coating, water-based coating, and UV coating were 149.23, 50.90, and 1.87 mg·m-3, respectively, and the primary contributing components of OFP of different types of coating were m/p-xylene (26.61%), ethanol (36.35%), and ethanol (23.98%), respectively. ④ The SOA of VOCs emitted by solvent-based coating, water-based coating, and UV coating were 0.76, 0.25, and 0.01 mg·m-3, respectively. The SOA generation of various types of coating was dominated by aromatics(96.35%-98.96%), and the main active compounds were toluene, ethylbenzene, and xylene. ⑤ Comparing the environmental impact of exhaust gas from solvent-based coating, water-based coating, and UV coating, it was found that the OFP and SOA generated by the VOCs emitted from solvent-based coating were much higher than those for water-based coating and UV coating. Therefore, the implementation of water-based coating and UV coating substitution strategy from the source could effectively reduce VOCs emissions and abate OFP and SOA productions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: Zh Revista: Huan Jing Ke Xue Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: Zh Revista: Huan Jing Ke Xue Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: China