Your browser doesn't support javascript.
loading
Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips.
Aguirre Rivera, J; Mao, G; Sabantsev, A; Panfilov, M; Hou, Q; Lindell, M; Chanez, C; Ritort, F; Jinek, M; Deindl, S.
Afiliação
  • Aguirre Rivera J; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden.
  • Mao G; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden.
  • Sabantsev A; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden.
  • Panfilov M; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden.
  • Hou Q; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden.
  • Lindell M; Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 75144 Uppsala, Sweden.
  • Chanez C; Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
  • Ritort F; Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, 08028 Barcelona, Spain.
  • Jinek M; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
  • Deindl S; Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
Science ; 385(6711): 892-898, 2024 Aug 23.
Article em En | MEDLINE | ID: mdl-39172826
ABSTRACT
Single-molecule techniques are ideally poised to characterize complex dynamics but are typically limited to investigating a small number of different samples. However, a large sequence or chemical space often needs to be explored to derive a comprehensive understanding of complex biological processes. Here we describe multiplexed single-molecule characterization at the library scale (MUSCLE), a method that combines single-molecule fluorescence microscopy with next-generation sequencing to enable highly multiplexed observations of complex dynamics. We comprehensively profiled the sequence dependence of DNA hairpin properties and Cas9-induced target DNA unwinding-rewinding dynamics. The ability to explore a large sequence space for Cas9 allowed us to identify a number of target sequences with unexpected behaviors. We envision that MUSCLE will enable the mechanistic exploration of many fundamental biological processes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Sequenciamento de Nucleotídeos em Larga Escala / Imagem Individual de Molécula / Microscopia de Fluorescência Idioma: En Revista: Science Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suécia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Sequenciamento de Nucleotídeos em Larga Escala / Imagem Individual de Molécula / Microscopia de Fluorescência Idioma: En Revista: Science Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suécia País de publicação: Estados Unidos