Your browser doesn't support javascript.
loading
Adipose-derived stem cell-based anti-inflammatory paracrine factor regulation for the treatment of inflammatory bowel disease.
Park, Naeun; Kim, Kyoung Sub; Park, Chun Gwon; Jung, Hyun-Do; Park, Wooram; Na, Kun.
Afiliação
  • Park N; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Kim KS; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Park CG; Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Su
  • Jung HD; Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea.
  • Park W; Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea.
  • Na K; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea. Electron
J Control Release ; 374: 384-399, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39173953
ABSTRACT
Stem cell-based therapies offer promising avenues for treating inflammatory diseases owing to their immunomodulatory properties. However, challenges persist regarding their survival and efficacy in inflamed tissues. Our study introduces a novel approach by engineering adipose-derived stem cells (ADSCs) to enhance their viability in inflammatory environments and boost the secretion of paracrine factors for treating inflammatory bowel disease (IBD). An arginine-glycine-aspartate peptide-poly (ethylene glycol)-chlorin e6 conjugate (RPC) was synthesized and coupled with ADSCs, resulting in RPC-labeled ADSCs (ARPC). This conjugation strategy employed RGD-integrin interaction to shield stem cells and allowed visualization and tracking using chlorin e6. The engineered ARPC demonstrated enhanced viability and secretion of paracrine factors upon light irradiation, regulating the inflammatory microenvironment. RNA-sequencing analysis unveiled pathways favoring angiogenesis, DNA repair, and exosome secretion in ARPC(+) while downregulating inflammatory pathways. In in vivo models of acute and chronic IBD, ARPC(+) treatment led to reduced inflammation, preserved colon structure, and increased populations of regulatory T cells, highlighting its therapeutic potential. ARPC(+) selectively homed to inflammatory sites, demonstrating its targeted effect. Overall, ARPC(+) exhibits promise as an effective and safe therapeutic strategy for managing inflammatory diseases like IBD by modulating immune responses and creating an anti-inflammatory microenvironment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco / Doenças Inflamatórias Intestinais / Tecido Adiposo Limite: Animals / Female / Humans Idioma: En Revista: J Control Release Assunto da revista: FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco / Doenças Inflamatórias Intestinais / Tecido Adiposo Limite: Animals / Female / Humans Idioma: En Revista: J Control Release Assunto da revista: FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda