Temporal Characterization and Visualization of Revolving Therapy-Events in Lung Cancer Patients.
Stud Health Technol Inform
; 316: 1642-1646, 2024 Aug 22.
Article
em En
| MEDLINE
| ID: mdl-39176525
ABSTRACT
This paper presents a comprehensive workflow for integrating revolving events into the transitive sequential pattern mining (tSPM+) algorithm and Machine Learning for Health Outcomes (MLHO) framework, emphasizing best practices and pitfalls in its application. We emphasize feature engineering and visualization techniques, demonstrating their efficacy in capturing temporal relationships. Applied to an EGFR lung cancer cohort, our approach showcases reliable temporal insights even in a small dataset. This work highlights the importance of temporal nuances in healthcare data analysis, paving the way for improved disease understanding and patient care.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Mineração de Dados
/
Aprendizado de Máquina
/
Neoplasias Pulmonares
Limite:
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Assunto da revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Alemanha
País de publicação:
Holanda