Your browser doesn't support javascript.
loading
Inhibited Passivation by Bioinspired Cell Membrane Zn Interface for Zn-Air Batteries with Extended Temperature Adaptability.
Bai, Yu; Deng, Danni; Wang, Jinxian; Wang, Yuchao; Chen, Yingbi; Zheng, Huanran; Liu, Mengjie; Zheng, Xinran; Jiang, Jiabi; Zheng, Haitao; Yi, Maozhong; Li, Weijie; Fang, Guozhao; Wang, Dingsheng; Lei, Yongpeng.
Afiliação
  • Bai Y; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Deng D; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Wang J; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Wang Y; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Chen Y; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Zheng H; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Liu M; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Zheng X; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Jiang J; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Zheng H; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Yi M; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Li W; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
  • Fang G; Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China.
  • Wang D; Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  • Lei Y; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.
Adv Mater ; 36(40): e2411404, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39188196
ABSTRACT
Due to the slow dynamics of mass and charge transfer at Zn|electrolyte interface, the stable operation of Zn-air batteries (ZABs) is challenging, especially at low temperature. Herein, inspired by cell membrane, a hydrophilic-hydrophobic dual modulated Zn|electrolyte interface is constructed. This amphiphilic design enables the quasi-solid-state (QSS) ZABs to display a long-term cyclability of 180 h@50 mA cm-2 at 25 °C. Moreover, a record-long time of 173 h@4 mA cm-2 at -60 °C is also achieved, which is almost threefolds of untreated QSS ZABs. Control experiments and (in situ) characterization reveal that the growth of insulating ZnO passivation layers is largely inhibited by tuned hydrophilic-hydrophobic behavior. Thus, the enhanced transfer dynamic of Zn2+ at Zn|electrolyte interface from 25 to -60 °C is attained. As an extension, the QSS Al-air batteries (AABs) with bioinspired interface also show unprecedented discharge stability of 420 h@1 mA cm-2 at -40 °C, which is about two times of untreated QSS AABs. This bioinspired-hydrophilic-hydrophobic dual modulation strategy may provide a reference for energy transform and storage devices with broad temperature adaptability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha