Your browser doesn't support javascript.
loading
Waste management optimization with NLP modeling and waste-to-energy in a circular economy.
Hernández-Romero, Ilse María; Niño-Caballero, Javier Camilo; González, Lucy T; Pérez-Rodríguez, Michael; Flores-Tlacuahuac, Antonio; Montesinos-Castellanos, Alejandro.
Afiliação
  • Hernández-Romero IM; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico. ilse.hernandez@tec.mx.
  • Niño-Caballero JC; Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
  • González LT; Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
  • Pérez-Rodríguez M; Tecnologico de Monterrey, Centro del Agua, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
  • Flores-Tlacuahuac A; Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
  • Montesinos-Castellanos A; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
Sci Rep ; 14(1): 19859, 2024 Aug 27.
Article em En | MEDLINE | ID: mdl-39191830
ABSTRACT
This work presents a methodology integrating Non-Linear Programming (NLP) for multi-objective and multi-period optimization, addressing sustainable waste management and energy conversion challenges. It integrates waste-to-energy (WtE) technologies such as Anaerobic Digestion (AD), Incineration (Inc), Gasification (Gsf), and Pyrolysis (Py), and considers thermochemical, technical, economic, and environmental considerations through rigorous non-linear functions. Using Mexico City as a case study, the model develops waste management strategies that balance environmental and economic aims, considering social impacts. A trade-off solution is proposed to address the conflict between objectives. The economical optimal solution generates 1.79M$ with 954 tons of CO2 emissions while the environmental one generates 0.91M$ and reduces emissions by 54%, where 40% is due to gasification technology. Moreover, the environmentally optimal solution, with incineration and gasification generates 9500 MWh/day and 5960 MWh/day, respectively, demonstrates the capacity of the model to support sustainable energy strategies. Finally, this work presents an adaptable framework for sustainable waste management decision-making.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido