Your browser doesn't support javascript.
loading
Hydrogels and Aerogels for Versatile Photo-/Electro-Chemical and Energy-Related Applications.
Sun, Jiana; Luo, Taigang; Zhao, Mengmeng; Zhang, Lin; Zhao, Zhengping; Yu, Tao; Yan, Yibo.
Afiliação
  • Sun J; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Luo T; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Zhao M; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Zhang L; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Zhao Z; Zhijiang College, Zhejiang University of Technology, Hangzhou 310014, China.
  • Yu T; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
  • Yan Y; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
Molecules ; 29(16)2024 Aug 16.
Article em En | MEDLINE | ID: mdl-39202962
ABSTRACT
The development of photo-/electro-chemical and flexible electronics has stimulated research in catalysis, informatics, biomedicine, energy conversion, and storage applications. Gels (e.g., aerogel, hydrogel) comprise a range of polymers with three-dimensional (3D) network structures, where hydrophilic polyacrylamide, polyvinyl alcohol, copolymers, and hydroxides are the most widely studied for hydrogels, whereas 3D graphene, carbon, organic, and inorganic networks are widely studied for aerogels. Encapsulation of functional species with hydrogel building blocks can modify the optoelectronic, physicochemical, and mechanical properties. In addition, aerogels are a set of nanoporous or microporous 3D networks that bridge the macro- and nano-world. Different architectures modulate properties and have been adopted as a backbone substrate, enriching active sites and surface areas for photo-/electro-chemical energy conversion and storage applications. Fabrication via sol-gel processes, module assembly, and template routes have responded to professionalized features and enhanced performance. This review presents the most studied hydrogel materials, the classification of aerogel materials, and their applications in flexible sensors, batteries, supercapacitors, catalysis, biomedical, thermal insulation, etc.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça