Your browser doesn't support javascript.
loading
Life cycle environmental impacts of urban water systems in China.
Xu, Hao; Fu, Guangtao; Ye, Qian; Lyu, Mei; Yan, Xiaoyu.
Afiliação
  • Xu H; Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK; Renewable Energy Group, Engineering Department, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK.
  • Fu G; Centre for Water Systems, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK.
  • Ye Q; School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK.
  • Lyu M; North China Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100097, China.
  • Yan X; Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK; Renewable Energy Group, Engineering Department, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK. Elec
Water Res ; 266: 122350, 2024 Aug 28.
Article em En | MEDLINE | ID: mdl-39217644
ABSTRACT
Urban water systems in China are facing multiple challenges, including rapid urbanisation, climate change and infrastructure ageing. It is crucial to evaluate their environmental performance from a holistic perspective in planning and management processes. To the best of our knowledge, there is a lack of nationwide life cycle assessment (LCA) studies on China's urban water systems that cover all system stages. Therefore, this study aims to present a comprehensive and nationwide LCA analysis that pinpoints the environmental hotspots and their major sources across China. This study was conducted based on water utility databases at the province level, covering water abstraction and treatment, waterwork sludge treatment, water distribution, sewage collection, stormwater drainage, wastewater treatment and sewage sludge treatment. Nine environmental impact categories were calculated and analysed. The results reveal the inequity of environmental impacts across provinces, with overall impacts geographically higher in the east and south, lower in the west and north. However, at the functional unit level, the impacts in the northern and northeastern provinces are higher than other regions. Most environmental categories are dominated by multiple water system stages. The analyses of underlying drivers found that purchased electricity is the primary source of several environmental impacts. This study provides a holistic understanding of the environmental performance of China's urban water systems, offers some insights for comprehensive decision-making support on sustainable water system management, and can also serve as a benchmark for future scenario analysis to explore options for reducing environmental impact.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido