Modelling protein complexes with crosslinking mass spectrometry and deep learning.
Nat Commun
; 15(1): 7866, 2024 Sep 09.
Article
em En
| MEDLINE
| ID: mdl-39251624
ABSTRACT
Scarcity of structural and evolutionary information on protein complexes poses a challenge to deep learning-based structure modelling. We integrate experimental distance restraints obtained by crosslinking mass spectrometry (MS) into AlphaFold-Multimer, by extending AlphaLink to protein complexes. Integrating crosslinking MS data substantially improves modelling performance on challenging targets, by helping to identify interfaces, focusing sampling, and improving model selection. This extends to single crosslinks from whole-cell crosslinking MS, opening the possibility of whole-cell structural investigations driven by experimental data. We demonstrate this by revealing the molecular basis of iron homoeostasis in Bacillus subtilis.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Espectrometria de Massas
/
Bacillus subtilis
/
Proteínas de Bactérias
/
Aprendizado Profundo
Idioma:
En
Revista:
Nat Commun
Assunto da revista:
BIOLOGIA
/
CIENCIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Alemanha
País de publicação:
Reino Unido