Conformational Landscapes of 2,3-, 2,4-, 2,5-, and 2,6-Difluorobenzaldehyde Unveiled by Rotational Spectroscopy.
J Phys Chem A
; 128(39): 8305-8311, 2024 Oct 03.
Article
em En
| MEDLINE
| ID: mdl-39292919
ABSTRACT
We report the coexistence of anti-conformers and energetically unfavorable syn-conformers of 2,3-, 2,4-, 2,5-, and 2,6-difluorobenzaldehyde in the gas phase using broadband chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The rotational spectra of monosubstituted 13C isotopologues of the anti-conformers have also been assigned in natural abundance, which were used to derive their vibrationally averaged geometries and semi-experimental equilibrium structures. The energy differences between anti- and syn-conformations are estimated to be 10.9, 11.3, and 12.9 kJ/mol for 2,3-, 2,4-, and 2,5-difluorobenzaldehyde, respectively, at the theoretical level of DLPNO-CCSD(T)/def2-TZVP. Despite the steric repulsion caused by the close proximity between the oxygen atom of the aldehyde group and the ortho-substituted fluorine atom, our experimental results indicate the planarity of the syn-conformations. The frequencies of the large amplitude torsion between the phenyl and aldehyde groups have been estimated by experimental inertial defects, which agree with theoretical calculation results.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Phys Chem A
Assunto da revista:
QUIMICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos