Your browser doesn't support javascript.
loading
Coordinately unsaturated single Fe-atoms with N vacancies and enhanced sp3 carbon defects in Fe-N(sp2)-C structural units for suppression of cancer cell metabolism and electrochemical oxygen evolution.
Yadav, Anubha; Hiremath, Netra; Saini, Bhagirath; Matsagar, Babasaheb M; Han, Po-Chun; Ujihara, Masaki; Modi, Mohammed Hussein; Wu, Kevin C-W; Sharma, Rakesh K; Vankayala, Raviraj; Dutta, Saikat.
Afiliação
  • Yadav A; Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India. sdutta2@amity.edu.
  • Hiremath N; Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India.
  • Saini B; Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India. rks@iitj.ac.in.
  • Matsagar BM; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
  • Han PC; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
  • Ujihara M; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.
  • Modi MH; Soft X-ray Applications Lab, Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, India.
  • Wu KC; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
  • Sharma RK; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan.
  • Vankayala R; Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India. rks@iitj.ac.in.
  • Dutta S; Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India.
Nanoscale ; 2024 Oct 02.
Article em En | MEDLINE | ID: mdl-39354807
ABSTRACT
Installing coordinately unsaturated Fe-N-C structural units on polymer-composite-derived N-doped carbon offers highly active Fe-Nx sites for the electrochemical oxygen evolution reaction (OER) and reactive oxygen species (ROS) generation in tumor cells. An NH4Cl-driven high-temperature etching method was employed for the formation of FeSA950NC with coordinately unsaturated single Fe-atoms in an Fe-N(sp2)-C structural unit together with N vacancies (VN) and sp3 defects. The carbonization of Fe-phen@ZIF-8 at 800 °C for 30 min under argon, followed by grinding Fe-ZIF-8@RF-urea with NH4Cl at 950 °C for 2 hours, resulted in sp3 carbon defects and VN sites with coordination unsaturation in Fe-Nx due to NH4Cl decomposition to NH3 and HCl, which produced substantial internal stress for etching the carbon matrix. FeSA950NC was used to treat both A549 lung cancer cells and NIH3T3 mouse fibroblast cells to determine its potential as an efficient tumor therapeutic strategy using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ROS assays. Additionally, FeSA950NC provided high stability and excellent OER activity through the Fe-N(sp2)-C structural unit on pyridinic nitrogen by delivering at a minimum overpotential of 300 mV, which is much lower than that of structurally similar Fe-atom sites. The significantly stronger ROS and OER activities of FeSA950NC suggested the role of VN and sp3-carbon defects with coordinately unsaturated Fe-N2 sites in improving its catalytic performance.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Reino Unido