Granulocytes without degranulation: neutrophil function in granule-depleted cytoplasts.
Proc Natl Acad Sci U S A
; 80(16): 4968-72, 1983 Aug.
Article
em En
| MEDLINE
| ID: mdl-6308664
Neutrophils respond to a variety of stimuli by generating superoxide anion, degranulating, and aggregating. Because it has been suggested that fusion of granules with the plasmalemma (degranulation) is necessary for aggregation and superoxide anion generation, we have tested whether these responses can be demonstrated in "neutrophilic cytoplasts" (granule-free vesicles of cytoplasm enclosed by plasmalemma). When examined by electron microscopy, cytoplasts were found to be approximately 4 microns in diameter and essentially granule free. Cytoplasts exposed to fMet-Leu-Phe (0.1 microM) generated superoxide anion after a lag of 16 sec but released no detectable beta-glucuronidase, lysozyme, or elastase. Aggregation of cytoplasts, as measured by changes in light transmission, was also activated by fMet-Leu-Phe; no lag period was observed. Electron microscopy of the aggregates demonstrated clusters of cytoplasts with a scalloped appearance. Superoxide anion generation and aggregation of cytoplasts were also activated by phorbol 12-myristate 13-acetate, concanavalin A, and leukotriene B4. Exposure of cytoplasts to the dye 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)] led to dye uptake and enhancement of fluorescence, implying that the vesicles were sealed and maintained a membrane potential across the plasmalemma. Exposure of DiOC6(3)-loaded cytoplasts to fMet-Leu-Phe and PMA caused a rapid loss of dye fluorescence that was not inhibited by CN-, compatible with their lack of mitochondria. Exposure of dye-loaded cytoplasts to concanavalin A or leukotriene B4 caused an increase in fluorescence--i.e., a hyperpolarization. These results demonstrate that degranulation is not a prerequisite for aggregation or superoxide anion generation. The retention of ionic gradients and changes in membrane potential, as measured by DiOC6(3) fluorescence changes, suggest a fundamental role for ionic movements in activating superoxide anion generation and aggregation.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Granulócitos
/
Neutrófilos
Limite:
Humans
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
1983
Tipo de documento:
Article
País de publicação:
Estados Unidos