Your browser doesn't support javascript.
loading
Increased hexosamine availability similarly impairs the action of insulin and IGF-1 on glucose disposal.
Hawkins, M; Barzilai, N; Chen, W; Angelov, I; Hu, M; Cohen, P; Rossetti, L.
Afiliação
  • Hawkins M; Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Diabetes ; 45(12): 1734-43, 1996 Dec.
Article em En | MEDLINE | ID: mdl-8922359
ABSTRACT
Prolonged glucosamine (GlcN) infusion increases the skeletal muscle hexosamine concentration and induces peripheral insulin resistance in conscious rats. IGF-1 and insulin share common steps in signal transduction, and the action of IGF-1 on carbohydrate metabolism is preserved in certain insulin-resistant states. In our study, we attempted to delineate whether increased GlcN availability also impairs the effects of IGF-1 on glucose uptake (Rd), glycolysis, and glycogen synthesis. We performed euglycemic IGF-1 (5 and 15 microg x kg(-1) x min(-1)) and insulin (3 and 18 mU mg x kg(-1) x min(-1)) clamp studies at 0-2 h and 5-7 h in conscious rats (n = 44) during saline or GlcN infusions. GlcN infusion raised plasma GlcN levels to approximately 2.0 mmol/l and skeletal muscle uridinediphospho-n-acetylglucosamine to 80-150 nmol/g (approximately three- to fivefold over basal). During physiological hyperinsulinemia (3 mU x kg(-1) x min(-1), plasma insulin approximately 50 microU/ml), GlcN infusion caused comparable decreases in Rd (15.7 +/- 1.0 [5-7 h] vs. 21.7 +/- 2.3 [0-2 h] mg x kg(-1) x min(-1); P < 0.01) and glycogen synthesis (5.4 +/- 0.5 [5-7 h] vs. 10.4 +/- 1.9 [0-2 h] mg x kg(-1) x min(-1); P < 0.005). Furthermore, GlcN markedly decreased Rd by 7.8 +/- 1.2 mg x kg(-1) x min(-1) (18.7 +/- 0.7 [5-7 h] vs. 26.5 +/- 1.3 [0-2 h] mg x kg(-1) x min(-1); P < 0.001 vs. control) during IGF-1 (5 microg x kg(-1) x min(-1)) clamp studies. This decline was associated with a 26% decrease in the steady-state concentration of skeletal muscle Glc-6-P (286 +/- 45 vs. 386 +/- 36 nmol/g; P < 0.01) and was primarily caused by impaired glycogen synthesis (6.7 +/- 0.5 [5-7 h] vs. 13.9 +/- 0.9 [0-2 h] mg x kg(-1) x min(-1); P < 0.005). The effects of GlcN infusion on glucose disposal (percentage decrease in Rd) were correlated (r2 = 0.803; P < 0.01) with the skeletal muscle concentration of UDP-GlcNAc. To investigate whether IGF-1 can overcome GlcN-induced insulin resistance, GlcN and insulin (18 mU x kg(-1) x min(-1)) were infused for 7 h during euglycemic clamps, and IGF-1 (15 microg x kg(-1) x min(-1)) was superimposed during the final 2 h. GlcN infusion induced severe impairment of insulin action on Rd (39.4 +/- 3.2 [4-5 h] vs. 49.8 +/- 3.6 [1-2 h] mg x kg(-1) x min(-1); P < 0.05), which the addition of IGF-1 failed to improve (35.9 +/- 2.3 [6-7 h] vs. 39.4 +/- 3.2 [4-5 h] mg x kg(-1) x min(-1); P > 0.1). In summary, GlcN induced severe resistance to the actions of both insulin and IGF-1 on glucose uptake and glycogen synthesis, and IGF-1 was unable to overcome GlcN-induced insulin resistance. Thus, it is likely that GlcN causes peripheral insulin resistance acting at a site common to both IGF-1 and insulin signaling pathways.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicemia / Fator de Crescimento Insulin-Like I / Músculo Esquelético / Hexosaminas / Insulina Limite: Animals Idioma: En Revista: Diabetes Ano de publicação: 1996 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicemia / Fator de Crescimento Insulin-Like I / Músculo Esquelético / Hexosaminas / Insulina Limite: Animals Idioma: En Revista: Diabetes Ano de publicação: 1996 Tipo de documento: Article País de afiliação: Estados Unidos
...