Your browser doesn't support javascript.
loading
Systemic Tissue and Cellular Disruption from SARS-CoV-2 Infection revealed in COVID-19 Autopsies and Spatial Omics Tissue Maps
Jiwoon Park; Jonathan Foox; Tyler Hether; David Danko; Sarah Warren; Youngmi Kim; Jason Reeves; Danel J Butler; Christopher Mozsary; Joel Rosiene; Alon Shaiber; Ebrahim Afshinnekoo; Matthew MacKay; Yaron Bram; Vasuretha Chandar; Heather Geiger; Arryn Craney; Priya Velu; Ari M Melnick; Iman Hajirasouliha; Afshin Beheshti; Amanda Saravia-Butler; Eve Syrkin Wurtele; Jonathan Schisler; Samantha Fenessey; Andre Corvelo; Michael C Zody; Soren Germer; Steven Salvatore; Shawn Levy; Shixiu Wu; Nicholas Tatonetti; Sagi Shapira; Mirella Salvatore; Massimo Loda; Lars F Westblade; Melissa Cushing; Hanna Rennert; Alison J Kriegel; Olivier Elemento; Marcin Imielinski; Alain C Borczuk; Cem Meydan; Robert E Schwartz; Christopher E Mason.
Afiliação
  • Jiwoon Park; Weill Cornell Medicine
  • Jonathan Foox; Weill Cornell Medicine
  • Tyler Hether; Nanostring Technologies
  • David Danko; Weill Cornell Medicine
  • Sarah Warren; Nanostring Technologies
  • Youngmi Kim; Nanostring Technologies
  • Jason Reeves; Nanostring Technologies
  • Danel J Butler; Weill Cornell Medicine
  • Christopher Mozsary; Weill Cornell Medicine
  • Joel Rosiene; Weill Cornell Medicine
  • Alon Shaiber; Weill Cornell Medicine
  • Ebrahim Afshinnekoo; Weill Cornell Medicine
  • Matthew MacKay; Weill Cornell Medicine
  • Yaron Bram; Weill Cornell Medicine
  • Vasuretha Chandar; Weill Cornell Medicine
  • Heather Geiger; New York Genome Center
  • Arryn Craney; Weill Cornell Medicine
  • Priya Velu; Weill Cornell Medicine
  • Ari M Melnick; Weill Cornell Medicine
  • Iman Hajirasouliha; Weill Cornell Medicine
  • Afshin Beheshti; Broad Institute
  • Amanda Saravia-Butler; NASA Ames Research Center
  • Eve Syrkin Wurtele; Iowa State University
  • Jonathan Schisler; University of North Carolina
  • Samantha Fenessey; New York Genome Center
  • Andre Corvelo; New York Genome Center
  • Michael C Zody; New York Genome Center
  • Soren Germer; New York Genome Center
  • Steven Salvatore; Weill Cornell Medicine
  • Shawn Levy; Hudson Alpha
  • Shixiu Wu; Hangzhou Cancer Hospital
  • Nicholas Tatonetti; Columbia Univeristy
  • Sagi Shapira; Columbia Univeristy
  • Mirella Salvatore; Weill Cornell Medicine
  • Massimo Loda; Weill Cornell Medicine
  • Lars F Westblade; Weill Cornell Medicine
  • Melissa Cushing; Weill Cornell Medicine
  • Hanna Rennert; Weill Cornell Medicine
  • Alison J Kriegel; Medical College of Wisconsin
  • Olivier Elemento; Weill Cornell Medicine
  • Marcin Imielinski; Weill Cornell Medicine
  • Alain C Borczuk; Weill Cornell Medicine
  • Cem Meydan; Weill Cornell Medicine
  • Robert E Schwartz; Weill Cornell Medicine
  • Christopher E Mason; Weill Cornell Medicine
Preprint em En | PREPRINT-BIORXIV | ID: ppbiorxiv-434433
ABSTRACT
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.
Licença
cc_no
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-BIORXIV Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Preprint
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-BIORXIV Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Preprint