Este artigo é um Preprint
Preprints são relatos preliminares de pesquisa que não foram certificados pela revisão por pares. Eles não devem ser considerados para orientar a prática clínica ou comportamentos relacionados à saúde e não devem ser publicados na mídia como informação estabelecida.
Preprints publicados online permitem que os autores recebam feedback rápido, e toda a comunidade científica pode avaliar o trabalho independentemente e responder adequadamente. Estes comentários são publicados juntamente com os preprints para qualquer pessoa ler e servir como uma avaliação pós-publicação.
Modelling of Systemic versus Pulmonary Chloroquine Exposure in Man for COVID-19 Dose Selection
Preprint
em En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-20078741
ABSTRACT
Chloroquine has attracted intense attention as a potential clinical candidate for prevention and treatment of COVID-19 based on reports of in-vitro efficacy against SARS-CoV-2. While the pharmacokinetic-pharmacodynamic (PK-PD) relationship of chloroquine is well established for malaria, there is sparse information regarding its dose-effect relationship in the context of COVID-19. Here, we explore the PK-PD relationship of chloroquine for COVID-19 by modelling both achievable systemic and pulmonary drug concentrations. Our data indicate that the standard anti-malarial treatment dose of 25mg/kg over three days does not deliver sufficient systemic drug exposures for the inhibition of viral replication. In contrast, PK predictions of chloroquine in the lungs using in-vivo data or human physiologically-based PK models, suggest that doses as low as 3mg/kg/day for 3 days could deliver exposures that are significantly higher than reported antiviral-EC90s for up to a week. Moreover, if pulmonary exposure is a driver for prevention, simulations show that chronic daily dosing of chloroquine may be unnecessary for prophylaxis purposes. Instead, once weekly doses of 5mg/kg would be sufficient to achieve a continuous cover of therapeutically active pulmonary exposures. These findings reveal a highly compartmentalised distribution of chloroquine in man that may significantly affect its therapeutic potential against COVID-19. The systemic circulation is shown as one site where chloroquine exposure is insufficient to inhibit SARS-CoV-2 replication. However, if therapeutic activity is driven by pulmonary exposure, it should be possible to reduce the chloroquine dose to safe levels. Carefully designed randomized controlled trials are urgently required to address these outstanding issues.
cc_by_nd
Texto completo:
1
Coleções:
09-preprints
Base de dados:
PREPRINT-MEDRXIV
Tipo de estudo:
Experimental_studies
/
Prognostic_studies
/
Rct
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Preprint