Your browser doesn't support javascript.
loading
Optimality in COVID-19 vaccination strategies determined by heterogeneity in human-human interaction networks
Bjoern Goldenbogen; Stephan Oliver Adler; Oliver Bodeit; Judith Wodke; Ximena Escalera-Fanjul; Aviv Korman; Maria Krantz; Lasse Bonn; Rafael Ubaldo Moran Torres; Johanna EL Haffner; Maxim Karnetzki; Ivo Maintz; Lisa Mallis; Hannah Prawitz; Patrick Steven Segelitz; Martin Seeger; Rune Linding; Edda Klipp.
Afiliação
  • Bjoern Goldenbogen; Humboldt-Universitaet zu Berlin
  • Stephan Oliver Adler; Humboldt-Universitaet zu Berlin
  • Oliver Bodeit; Humboldt-Universitaet zu Berlin
  • Judith Wodke; Humboldt-Universitaet zu Berlin
  • Ximena Escalera-Fanjul; Humboldt-Universitaet zu Berlin
  • Aviv Korman; Humboldt-Universitaet zu Berlin
  • Maria Krantz; Humboldt-Universitaet zu Berlin
  • Lasse Bonn; Humboldt-Universitaet zu Berlin
  • Rafael Ubaldo Moran Torres; Humboldt-Universitaet zu Berlin
  • Johanna EL Haffner; Humboldt-Universitaet zu Berlin
  • Maxim Karnetzki; Humboldt-Universitaet zu Berlin
  • Ivo Maintz; Humboldt-Universitaet zu Berlin
  • Lisa Mallis; Humboldt-Universitaet zu Berlin
  • Hannah Prawitz; Humboldt-Universitaet zu Berlin
  • Patrick Steven Segelitz; Humboldt-Universitaet zu Berlin
  • Martin Seeger; Humboldt-Universitaet zu Berlin
  • Rune Linding; Humboldt-Universitaet zu Berlin
  • Edda Klipp; Humboldt-Universitaet zu Berlin
Preprint em En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20248301
ABSTRACT
Reaching population immunity against COVID-19 is proving difficult even in countries with high vaccination levels. We demonstrate that this in part is due to heterogeneity and stochasticity resulting from community-specific human-human interaction and infection networks. We address this challenge by community-specific simulation of adaptive strategies. Analyzing the predicted effect of vaccination into an ongoing COVID-19 outbreak, we find that adaptive combinations of targeted vaccination and non-pharmaceutical interventions (NPIs) are required to reach population immunity. Importantly, the threshold for population immunity is not a unique number but strategy and community dependent. Furthermore, the dynamics of COVID-19 outbreaks is highly community-specific in some communities vaccinating highly interactive people diminishes the risk for an infection wave, while vaccinating the elderly reduces fatalities when vaccinations are low due to supply or hesitancy. Similarly, while risk groups should be vaccinated first to minimize fatalities, optimality branching is observed with increasing population immunity. Bimodality emerges as the infection network gains complexity over time, which entails that NPIs generally need to be longer and stricter. Thus, we analyze and quantify the requirement for NPIs dependent on the chosen vaccination strategy. We validate our simulation platform on real-world epidemiological data and demonstrate that it can predict pathways to population immunity for diverse communities world-wide challenged by limited vaccination.
Licença
cc_by
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-MEDRXIV Tipo de estudo: Experimental_studies / Prognostic_studies / Rct Idioma: En Ano de publicação: 2020 Tipo de documento: Preprint
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-MEDRXIV Tipo de estudo: Experimental_studies / Prognostic_studies / Rct Idioma: En Ano de publicação: 2020 Tipo de documento: Preprint