Your browser doesn't support javascript.
loading
A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system / 浙江大学学报(英文版)(B辑:生物医学和生物技术)
Article em En | WPRIM | ID: wpr-929045
Biblioteca responsável: WPRO
ABSTRACT
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9), the third-generation genome editing tool, has been favored because of its high efficiency and clear system composition. In this technology, the introduced double-strand breaks (DSBs) are mainly repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The high-fidelity HDR pathway is used for genome modification, which can introduce artificially controllable insertions, deletions, or substitutions carried by the donor templates. Although high-level knock-out can be easily achieved by NHEJ, accurate HDR-mediated knock-in remains a technical challenge. In most circumstances, although both alleles are broken by endonucleases, only one can be repaired by HDR, and the other one is usually recombined by NHEJ. For gene function studies or disease model establishment, biallelic editing to generate homozygous cell lines and homozygotes is needed to ensure consistent phenotypes. Thus, there is an urgent need for an efficient biallelic editing system. Here, we developed three pairs of integrated selection systems, where each of the two selection cassettes contained one drug-screening gene and one fluorescent marker. Flanked by homologous arms containing the mutated sequences, the selection cassettes were integrated into the target site, mediated by CRISPR/Cas9-induced HDR. Positively targeted cell clones were massively enriched by fluorescent microscopy after screening for drug resistance. We tested this novel method on the amyloid precursor protein (APP) and presenilin 1 (PSEN1) loci and demonstrated up to 82.0% biallelic editing efficiency after optimization. Our results indicate that this strategy can provide a new efficient approach for biallelic editing and lay a foundation for establishment of an easier and more efficient disease model.
Assuntos
Palavras-chave
Texto completo: 1 Base de dados: WPRIM Assunto principal: Alelos / Reparo do DNA por Junção de Extremidades / Reparo de DNA por Recombinação / Sistemas CRISPR-Cas / Edição de Genes Idioma: En Revista: J. Zhejiang Univ., Sci. B (Internet) Ano de publicação: 2022 Tipo de documento: Article
Texto completo: 1 Base de dados: WPRIM Assunto principal: Alelos / Reparo do DNA por Junção de Extremidades / Reparo de DNA por Recombinação / Sistemas CRISPR-Cas / Edição de Genes Idioma: En Revista: J. Zhejiang Univ., Sci. B (Internet) Ano de publicação: 2022 Tipo de documento: Article