Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(31): 20401-20411, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730209

RESUMO

The geometric and electronic properties of silicon-atom-doped aluminum clusters, AlnSim (n = 7-30, m = 0-2), were investigated experimentally. The size dependences of the ionization energy and electron affinity of AlnSim show that the stability of AlnSim is governed by the total number of valence electrons in the clusters, where Al and Si atoms behave as trivalent and tetravalent atoms, respectively. Together with theoretical calculations, it has been revealed that neutral Al10Si and Al12Si have a cage-like geometry with central Si atom encapsulation and closed electronic structures of superatomic orbitals (SAOs), and also that they both exhibit geometric robustness against reductive and oxidative changes as cage-like binary superatoms of Si@Al10 and Si@Al12. As well as the single-atom-doped binary superatoms, the effect of symmetry lowering was examined by doping a second Si atom toward the electron SAO closing of 2P SAO, forming Al11Si2. The corresponding anion and cation clusters keep their geometry of the neutral intact, and the ionization energy is low compared to others, showing that Al11Si2 is characterized to be, Si@Al11Si as an alkaline-like binary superatom. For Al21Si2, a face-sharing bi-icosahedral structure was identified to be the most stable as dimeric superatom clusters.

2.
Phys Chem Chem Phys ; 14(26): 9403-10, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22333909

RESUMO

The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption.

3.
J Chem Phys ; 129(21): 214301, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19063555

RESUMO

The electronic properties of silicon clusters containing a transition or lanthanide metal atom from group 3, 4, or 5, MSi(n), (M=Sc, Ti, V, Y, Zr, Nb, Lu, Tb, Ho, Hf, and Ta) were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, Lu, Tb, and Ho, the threshold energy of electron detachment exhibits local maxima at n=10 and 16, while in case of the group 4 elements Ti, Zr, and Hf, the threshold energy exhibits a local minimum at n=16, associated with the presence of a small bump in the spectrum. These electronic characteristics of MSi(n) are closely related to a cooperative effect between their geometric and electronic structures, which is discussed, together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption, and with theoretical calculations.

4.
J Chem Phys ; 129(6): 064311, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18715073

RESUMO

Silicon (Si), germanium (Ge), tin (Sn), and lead (Pb) clusters mixed with a group-4 transition metal atom [M = titanium (Ti), zirconium (Zr), and hafnium (Hf)] were generated by a dual-laser vaporization method, and their properties were analyzed by means of time-of-flight mass spectroscopy and anion photoelectron spectroscopy together with theoretical calculations. In the mass spectra, mixed neutral clusters of MSi(16), MGe(16), and MSn(16) were produced specifically, but the yield of MPb(16) was low. The anion photoelectron spectra revealed that MSi(16), MGe(16), and MSn(16) neutrals have large highest occupied molecular orbital-lowest unoccupied molecular orbital gaps of 1.5-1.9 eV compared to those of MPb(16) (0.8-0.9 eV), implying that MSi(16), MGe(16), and MSn(16) are evidently electronically stable clusters. Cage aromaticity appears to be an important determinant of the electronic stability of these clusters: Calculations of nucleus-independent chemical shifts (NICSs) show that Si(16)(4-), Ge(16)(4-), and Sn(16)(4-) have aromatic characters with negative NICS values, while Pb(16)(4-) has an antiaromatic character with a positive NICS value.

5.
J Phys Chem A ; 111(1): 42-9, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201386

RESUMO

Silicon clusters mixed with a transition metal atom, MSin, were generated by a double-laser vaporization method, and the electronic and geometric stabilities for the resulting clusters with transition metal encapsulated by silicon were examined experimentally. By means of a systematic doping with transition metal atoms of groups 3, 4, and 5 (M = Sc, Y, Lu, Ti, Zr, Hf, V, Nb, and Ta), followed by changes of charge states, we explored the use of an electronic closing of a silicon caged cluster and variations in its cavity size to facilitate metal-atom encapsulation. Results obtained by mass spectrometry, anion photoelectron spectroscopy, and adsorption reactivity toward H2O show that the neutral cluster doped with a group 4 atom features an electronic and a geometric closing at n = 16. The MSi(16) cluster with a group 4 atom undergoes an electronic change in (i) the number of valence electrons when the metal atom is substituted by the neighboring metals with a group 3 or 5 atom and in (ii) atomic radii with the substitution of the same group elements of Zr and Hf. The reactivity of a halogen atom with the MSi(16) clusters reveals that VSi(16)F forms a superatom complex with ionic bonding.

6.
J Phys Chem A ; 111(4): 573-7, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17249745

RESUMO

Electronic properties of silicon and germanium atom doped indium clusters, In(n)Si(m) and In(n)Ge(m), were investigated by photoionization spectroscopy of the neutrals and photoelectron spectroscopy of the anions. Size dependence of ionization energy and electron affinity for In(n)Si(1) and In(n)Ge(1) exhibit pronounced even-odd alternation at cluster sizes of n = 10-16, as compared to those for pure In(n) clusters. This result shows that symmetry lowering with the doped atom of Si or Ge results in undegeneration of electronic states in the 1d shell formed by monovalent In atoms.

7.
J Phys Chem A ; 110(44): 12073-6, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17078599

RESUMO

The geometric and electronic structures of aluminum binary clusters, AlnX (X = Si and P), have been investigated, using mass spectrometry, anion photoelectron spectroscopy, photoionization spectroscopy, and theoretical calculations. Both experimental and theoretical results show that Al12Si has a high ionization energy and low electron affinity and Al12P has a low ionization energy, both with the icosahedral structure having a central Si or P atom, revealing that Al12Si and Al12P exhibit rare-gas-like and alkali superatoms, respectively. Experiments confirmed the possibility that the change in the total number of valence electrons on substitution could produce ionically bound binary superatom complexes, the binary cluster salts Al12P+ F- and Al12B- Cs+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA